导航:首页 > 编程语言 > pythonscipy模块

pythonscipy模块

发布时间:2023-02-11 02:17:44

python数据挖掘是什么

数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信
息和知识的过程。
python数据挖掘常用模块
numpy模块:用于矩阵运算、随机数的生成等

pandas模块:用于数据的读取、清洗、整理、运算、可视化等

matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块

statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等

scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等

sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等
数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?
关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要
你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据
挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓
了。

对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是
否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来
的预测。

差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;
不懂分析的人,做不到这些,更多的是描述数据。
更多技术请关注python视频教程。

② python求解线性规划问题,百度后发现了scipy模块,optimize,新手希望大神能写个实例,例子如下:

scipy做线性规划不是很方便,推荐用pulp来做,这个模块不属于python的内置模块,需要先安装,pip install pulp
from pulp import *

# 设置对象
prob = LpProblem('myProblem', LpMinimize)

# 设置三个变量,并设置变量最小取值
x1 = LpVariable('x1', 0)
x2 = LpVariable('x2', 0)
x3 = LpVariable('x3', 0)
x4 = LpVariable('x4')

# 载入目标函数,默认是求最小值,因此这次对原目标函数乘以-1
prob += 3*x1 - 4*x2 + 2*x3 -5*x4

# 载入约束变量
prob += 4*x1 - x2 + 2*x3 -x4 == -2
prob += x1 + x2 -x3 + 2*x4 <= 14
prob += -2*x1 + 3*x2 + x3 -x4 >= 2

# 求解
status = prob.solve()

# 显示结果
for i in prob.variables():
print(i.name + "=" + str(i.varValue))

计算结果为:
x1=0.0
x2=2.0
x3=4.0
x4=8.0

③ 10 个 Python 图像编辑工具

以下提到的这些 Python 工具在编辑图像、操作图像底层数据方面都提供了简单直接的方法。

-- Parul Pandey

当今的世界充满了数据,而图像数据就是其中很重要的一部分。但只有经过处理和分析,提高图像的质量,从中提取出有效地信息,才能利用到这些图像数据。

常见的图像处理操作包括显示图像,基本的图像操作,如裁剪、翻转、旋转;图像的分割、分类、特征提取;图像恢复;以及图像识别等等。Python 作为一种日益风靡的科学编程语言,是这些图像处理操作的最佳选择。同时,在 Python 生态当中也有很多可以免费使用的优秀的图像处理工具。

下文将介绍 10 个可以用于图像处理任务的 Python 库,它们在编辑图像、查看图像底层数据方面都提供了简单直接的方法。

scikit-image 是一个结合 NumPy 数组使用的开源 Python 工具,它实现了可用于研究、教育、工业应用的算法和应用程序。即使是对于刚刚接触 Python 生态圈的新手来说,它也是一个在使用上足够简单的库。同时它的代码质量也很高,因为它是由一个活跃的志愿者社区开发的,并且通过了 同行评审(peer review)。

scikit-image 的 文档 非常完善,其中包含了丰富的用例。

可以通过导入 skimage 使用,大部分的功能都可以在它的子模块中找到。

图像滤波(image filtering):

使用 match_template() 方法实现 模板匹配(template matching):

在 展示页面 可以看到更多相关的例子。

NumPy 提供了对数组的支持,是 Python 编程的一个核心库。图像的本质其实也是一个包含像素数据点的标准 NumPy 数组,因此可以通过一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以从像素级别对图像进行编辑。通过 NumPy 数组存储的图像也可以被 skimage 加载并使用 matplotlib 显示。

在 NumPy 的 官方文档 中提供了完整的代码文档和资源列表。

使用 NumPy 对图像进行 掩膜(mask)操作:

像 NumPy 一样, SciPy 是 Python 的一个核心科学计算模块,也可以用于图像的基本操作和处理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模块,它提供了在 n 维 NumPy 数组上的运行的函数。SciPy 目前还提供了 线性和非线性滤波(linear and non-linear filtering)、 二值形态学(binary morphology)、 B 样条插值(B-spline interpolation)、 对象测量(object measurements)等方面的函数。

在 官方文档 中可以查阅到 scipy.ndimage 的完整函数列表。

使用 SciPy 的 高斯滤波 对图像进行模糊处理:

PIL (Python Imaging Library) 是一个免费 Python 编程库,它提供了对多种格式图像文件的打开、编辑、保存的支持。但在 2009 年之后 PIL 就停止发布新版本了。幸运的是,还有一个 PIL 的积极开发的分支 Pillow ,它的安装过程比 PIL 更加简单,支持大部分主流的操作系统,并且还支持 Python 3。Pillow 包含了图像的基础处理功能,包括像素点操作、使用内置卷积内核进行滤波、颜色空间转换等等。

Pillow 的 官方文档 提供了 Pillow 的安装说明自己代码库中每一个模块的示例。

使用 Pillow 中的 ImageFilter 模块实现图像增强:

OpenCV(Open Source Computer Vision 库)是计算机视觉领域最广泛使用的库之一, OpenCV-Python 则是 OpenCV 的 Python API。OpenCV-Python 的运行速度很快,这归功于它使用 C/C++ 编写的后台代码,同时由于它使用了 Python 进行封装,因此调用和部署的难度也不大。这些优点让 OpenCV-Python 成为了计算密集型计算机视觉应用程序的一个不错的选择。

入门之前最好先阅读 OpenCV2-Python-Guide 这份文档。

使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)将苹果和橘子融合到一起:

SimpleCV 是一个开源的计算机视觉框架。它支持包括 OpenCV 在内的一些高性能计算机视觉库,同时不需要去了解 位深度(bit depth)、文件格式、 色彩空间(color space)之类的概念,因此 SimpleCV 的学习曲线要比 OpenCV 平缓得多,正如它的口号所说,“将计算机视觉变得更简单”。SimpleCV 的优点还有:

官方文档 简单易懂,同时也附有大量的学习用例。

文档 包含了安装介绍、示例以及一些 Mahotas 的入门教程。

Mahotas 力求使用少量的代码来实现功能。例如这个 Finding Wally 游戏 :

ITK (Insight Segmentation and Registration Toolkit)是一个为开发者提供普适性图像分析功能的开源、跨平台工具套件, SimpleITK 则是基于 ITK 构建出来的一个简化层,旨在促进 ITK 在快速原型设计、教育、解释语言中的应用。SimpleITK 作为一个图像分析工具包,它也带有 大量的组件 ,可以支持常规的滤波、图像分割、 图像配准(registration)功能。尽管 SimpleITK 使用 C++ 编写,但它也支持包括 Python 在内的大部分编程语言。

有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研领域中的应用,通过这些用例可以看到如何使用 Python 和 R 利用 SimpleITK 来实现交互式图像分析。

使用 Python + SimpleITK 实现的 CT/MR 图像配准过程:

pgmagick 是使用 Python 封装的 GraphicsMagick 库。 GraphicsMagick 通常被认为是图像处理界的瑞士军刀,因为它强大而又高效的工具包支持对多达 88 种主流格式图像文件的读写操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。

pgmagick 的 GitHub 仓库 中有相关的安装说明、依赖列表,以及详细的 使用指引 。

图像缩放:

边缘提取:

Cairo 是一个用于绘制矢量图的二维图形库,而 Pycairo 是用于 Cairo 的一组 Python 绑定。矢量图的优点在于做大小缩放的过程中不会丢失图像的清晰度。使用 Pycairo 可以在 Python 中调用 Cairo 的相关命令

Pycairo 的 GitHub 仓库 提供了关于安装和使用的详细说明,以及一份简要介绍 Pycairo 的 入门指南 。

使用 Pycairo 绘制线段、基本图形、 径向渐变(radial gradients):

以上就是 Python 中的一些有用的图像处理库,无论你有没有听说过、有没有使用过,都值得试用一下并了解它们。

via: https://opensource.com/article/19/3/python-image-manipulation-tools

作者: Parul Pandey 选题: lujun9972 译者: HankChow 校对: wxy

④ python图像处理库 哪个好 知乎

1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
2.Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
4. PIL/Pillow
PIL是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而,随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
5.OpenCV-Python
OpenCV是计算机视觉应用中应用最广泛的库之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
6.SimpleCV
SimpleCV也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。
7.Mahotas
Mahotas是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具
。其中,SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式读取、写入和操作图像。
10.Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。

⑤ python中如何安装SciPY模块

scipy包包含有C代码,安装时需要根据所使用的操作系统进行编译,因此不同的操作系统的安装方式是不同的。下面将介绍在windows操作系统中,如何安装scipy包:

  1. 在网页中 http://www.lfd.uci.e/~gohlke/pythonlibs/#scipy 下载对应操作系统的预编译安装包,需要根据python版本是2.x还是3.x,系统是32位还是64位进行选择

  2. 使用pip包管理器进行安装,在命令行中输入

    pip install 下载scipy安装包的路径

阅读全文

与pythonscipy模块相关的资料

热点内容
360度转变程序员 浏览:370
广东税务app个人纳税缴费入口在哪里 浏览:639
明日之后怎么把用过的服务器删除 浏览:952
安卓如何玩吃鸡的视频 浏览:739
安卓手机王者怎么扫码登录微信区 浏览:214
博雅汉语pdf 浏览:932
免费反编译软件哪个好 浏览:300
程序员被黑是怎么回事 浏览:324
单片机控制可调数字钟 浏览:645
螺杆式压缩机型号 浏览:647
PHP人才招聘网 浏览:906
基础的命令 浏览:428
隐身文件夹设置教程 浏览:502
javahttp服务端 浏览:597
桌面电脑的图标个别放不到文件夹 浏览:604
宇通客车空调压缩机是哪里产的 浏览:152
哪个app可以制作表情包 浏览:169
加密是指什么意思 浏览:987
jquery基础pdf 浏览:525
kr币服务器在什么地方 浏览:658