A. java数据库,哪个更好用
你好,对于java来说,MySQL是最好用的数据库。因为MySQL简单,高效,而且是免费的。有很多大型的java应用都是使用的MySQL数据库。
B. java分布式开发,什么是分布式开发。
就是同一个服务,把数据库的不同部分分开建立到不同的服务器上。以缓解数据库大量数据访问的压力。
很多大公司的业务量比较大,每天的访问量都达到几百万上千万,甚至上亿的访问量,在访问量不是很大的情况下,是可以通过提高单台服务器的配置来满足需求的。但是当单台服务器已经满足不了需求的时候就需要做分布式处理了。毕竟一台服务器的处理能力是有限的。
如果分散到几台甚至几十台几百天电脑上,其优势就显现出来了。
C. Java程序员都需要学习什么
据我所知java编程需要学习面向对象、基本语法、JSP、WebServer以及常用的Java开发工具和常用框架等知识。学习java编程可以使用JBuilder、IDEA、Eclipse等工具。
如果有C++等面向对象语言的开发经验,可以简单的翻看一下介绍JAVA的相关书籍就可以了。如果是新手就需要花时间好好研究一下Java的语法了
做JAVA程序员都少不了和JSP以及HTML打交道。因此,想成为JAVA程序员就不可避免的要熟悉JSP和HTML,最好能知道JSP的几个内置对象,如Session,Request,Reponse,以及常用的JSP标签,如include,userBean等。如果再熟悉一下JS和CSS就更好了,那会使得制作的页面更友好。
熟悉了以上这些已经可以制作出来JSP页面了,但是页面总要跑起来才能看到它的效果,这就要求必须熟悉一种WebServer,比如:TOMCAT,RESIN等。要学会如何发布应用,如何利用WebServer的数据库资源等。
想要创维一名优秀的Java程序员,建议找一家专业软件培训机构学习,我推建AAA软件教育集团,AAA教育集团(隶属于深圳市漫动者教育科技有限公司),成立于2007年,专业从事高端计算机职业教育工作,是国内知名的教育品牌。集团创立以来,依托先进的办学理念,AAA培养出数万名专业性、实战型高端技术人才,被业界誉为“互联网金领生产基地”。
D. java缓存机制有哪些 m
具体接触过的缓存机制是hibernate的缓存机制。为了避免每次都向数据库中取得数据,我们把用户常常访问到的数据放到内存中,甚至缓存十分大的时候我们可以把内存中的缓存放到硬盘中。还有高级的分布式缓存数据库使用,都可以增加系统的抗压力。
E. java分布式技术都包括什么能详细列举么
分布式是一种思想,范围很广,我得先知道它的诞生:
以前是一个数据库 一个JSP 就可以做一个应用了,后来随着业务复杂,我们开始分层,比如MVC之类的,再后来我们的数据越来越多了,比如有上亿的数据,这个时候我们一个数据库查询太慢了,就开始分库,这也算是分布式的一种。
还有比如我们的系统访问的人多了,比如双11,上千万人同时访问,我们的服务器(网站)支持不住了,这个时候就要部署到很多个服务器,每个服务器分摊请求,这也是分布式
当然随着业务扩大, 我们得分业务了,比如注册登录的,物流的,卖东西的 等等,不同的系统,但是各个系统之间进行协调,也算分布式一种
以上都算是分布式的来源,主要是解决 压力过大,大家协同工作的,那么这就涉及到一些常用的东西,或者像你说的的技术
1.你用N个数据库才放数据,至少CRUD 方面就 麻烦些了,得用cobar,tddl,mysql-proxy 等协调
2.服务器:你部署了很多服务器,肯定得用个东西来分发请求这些吧,nginx,apache 等分发请求。
3.你公司有很多系统,想很好的联系在一起,光用接口不满足了,得用一些JMS ,像activemq,ons 之类的来协调吧
4.为了解决io问题,得加缓存吧,那么缓存对应上面的,也得分布式吧,就涉及memcache,redies 等等
上面就简单的介绍了下 分布式 的东西,还有很多啦,这是常用的一些,希望你能慢慢来,不是一下子 能理解得
F. JAVA几种缓存技术介绍说明
1、TreeCache / JBossCache
JBossCache是一个复制的事务处理缓存,它允许你缓存企业级应用数据来更好的改善性能。缓存数据被自动复制,让你轻松进行JBoss服务器之间 的集群工作。JBossCache能够通过JBoss应用服务或其他J2EE容器来运行一个MBean服务,当然,它也能独立运行。
2、WhirlyCache
Whirlycache是一个快速的、可配置的、存在于内存中的对象的缓存。它能够通过缓存对象来加快网站或应用程序的速度,否则就必须通过查询数据库或其他代价较高的处理程序来建立。
3、SwarmCache
SwarmCache是一个简单且有效的分布式缓存,它使用IP multicast与同一个局域网的其他主机进行通讯,是特别为集群和数据驱动web应用程序而设计的。SwarmCache能够让典型的读操作大大超过写操作的这类应用提供更好的性能支持。
4、JCache
JCache是个开源程序,正在努力成为JSR-107开源规范,JSR-107规范已经很多年没改变了。这个版本仍然是构建在最初的功能定义上。
5、ShiftOne
ShiftOne Java Object Cache是一个执行一系列严格的对象缓存策略的Java lib,就像一个轻量级的配置缓存工作状态的框架。
G. 学习Java具体都要学什么内容
目前java学习除了在高校的专业中学习,还有自学和报班学习两种途径,根据每个人的情况最合适的学习方式是不同的。学习java只要掌握好方式和方法,其实学起来并不是非常难。
java学的内容主要有:
①JAVA编程基础(基础语法、面向对象、和谐特性等)
②WEB应用开发(静态网页制作、Oracle数据库、Java Web开发技术、Linux技术、网站性能与安全、软件工程开发流程、Java Web和谐等)
③企业级框架开发(数据结构与算法、SSH框架、JavaEE和谐等)
④项目实训
你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下大型企业需求自主研发课程的能力,建议实地考察对比一下。祝你学有所成,望采纳。
H. java用户评论缓存在哪里
在java应用中,对于访问频率比较高,又不怎么变化的数据,常用的解决方案是把这些数据加入缓存。相比DB,缓存的读取效率快好不少。java应用缓存一般分两种,一是进程内缓存,就是使用java应用虚拟机内存的缓存;另一个是进程外缓存,现在我们常用的各种分布式缓存。相比较而言,进程内缓存比进程外缓存快很多,而且编码也简单;但是,进程内缓存的存储量有限,使用的是java应用虚拟机的内存,而且每个应用都要存储一份,有一定的资源浪费。进程外缓存相比进程内缓存,会慢些,但是,存储空间可以横向扩展,不受限制。
这里是几中场景的访问时间
-------------------------------------------------------------------
| 从数据库中读取一条数据(有索引) | 十几毫秒 |
| 从远程分布式缓存读取一条数据 | 0.5毫秒 |
| 从内存中读取1MB数据 | 十几微妙 |
-------------------------------------------------------------------
进程内缓存和进程外缓存,各有优缺点,针对不同场景,可以分别采用不同的缓存方案。对于数据量不大的,我们可以采用进程内缓存。或者只要内存足够富裕,都可以采用,但是不要盲目以为自己富裕,不然可能会导致系统内存不够。
下面要分享的是一个代码级别的,对进程内缓存的经验总结。面向jdk1.8版本。
在有效时间内缓存单个对象
@FunctionalInterfacepublic interface LiveFetch<T> { // 刷新缓存接口 T fetch() ;
}
public class LiveManager<T> { // 缓存时间
private int cacheMillis; // 缓存对象
private LiveCache<T> liveCache; // 刷新缓存的对象
private LiveFetch<T> liveFetch ;
private Logger logger = LoggerFactory.getLogger(LiveManager.class) ;
// 刷新缓存开关
private boolean refresh = false ;
public LiveManager(int cacheMillis, LiveFetch<T> liveFetch) { this.cacheMillis = cacheMillis ; this.liveFetch = liveFetch ;
}
/**
* fetch cache ; if cache expired , synchronous fetch
* @return
*/
public T getCache() {
initLiveCache();
if(liveCache != null) {
T t ; if((t= liveCache.getElement()) != null) { return t ;
} else {
t = liveFetch.fetch() ; if(t != null) {
liveCache = new LiveCache<T>(cacheMillis, t) ; return t ;
}
}
}
return null ;
}
/**
* fetch cache ; if cache expired , return old cache and asynchronous fetch
* @return
*/
public T getCacheIfNecessary() {
initLiveCache();
if(liveCache != null) {
T t ; if((t= liveCache.getElement()) != null) { return t ;
} else {
refreshCache() ; return liveCache.getElementIfNecessary() ;
}
}
return null ;
}
/**
* init liveCache */
private void initLiveCache() { if(liveCache == null) {
T t = liveFetch.fetch() ; if(t != null) {
liveCache = new LiveCache<T>(cacheMillis, t) ;
}
}
}
/**
* asynchronous refresh cache */
private void refreshCache() {
if(refresh) return ;
refresh = true ; try {
Thread thread = new Thread(() -> { try {
T t = liveFetch.fetch(); if (t != null) {
liveCache = new LiveCache<>(cacheMillis, t);
}
} catch (Exception e){
logger.error("LiveManager.refreshCache thread error.", e);
} finally {
refresh = false ;
}
}) ;
thread.start();
} catch (Exception e) {
logger.error("LiveManager.refreshCache error.", e);
}
}
}
public class Test {
public static void main(String[] args) { int cacheMilis = 1000 ;
LiveManager<Object> liveManager = new LiveManager<>(cacheMilis,() -> new Test().t1()) ;
liveManager.getCache() ;
liveManager.getCacheIfNecessary() ;
}
public Object t1(){
return new Object() ;
}
}
I. JAVA目前比较常用的缓存有哪些 集中式缓存与分布式缓存有何区别 它们应用场景是
这个得顶一个,我也很想了解
J. 如何用java 建立一个分布式系统
分布式架构的演进
系统架构演化历程-初始阶段架构
初始阶段 的小型系统 应用程序、数据库、文件等所有的资源都在一台服务器上通俗称为LAMP
特征:
应用程序、数据库、文件等所有的资源都在一台服务器上。
描述:
通常服务器操作系统使用Linux,应用程序使用PHP开发,然后部署在Apache上,数据库使用MySQL,汇集各种免费开源软件以及一台廉价服务器就可以开始系统的发展之路了。
系统架构演化历程-应用服务和数据服务分离
好景不长,发现随着系统访问量的再度增加,webserver机器的压力在高峰期会上升到比较高,这个时候开始考虑增加一台webserver
特征:
应用程序、数据库、文件分别部署在独立的资源上。
描述:
数据量增加,单台服务器性能及存储空间不足,需要将应用和数据分离,并发处理能力和数据存储空间得到了很大改善。
系统架构演化历程-使用缓存改善性能
特征:
数据库中访问较集中的一小部分数据存储在缓存服务器中,减少数据库的访问次数,降低数据库的访问压力。
描述:
系统访问特点遵循二八定律,即80%的业务访问集中在20%的数据上。
缓存分为本地缓存和远程分布式缓存,本地缓存访问速度更快但缓存数据量有限,同时存在与应用程序争用内存的情况。
系统架构演化历程-使用应用服务器集群
在做完分库分表这些工作后,数据库上的压力已经降到比较低了,又开始过着每天看着访问量暴增的幸福生活了,突然有一天,发现系统的访问又开始有变慢的趋势了,这个时候首先查看数据库,压力一切正常,之后查看webserver,发现apache阻塞了很多的请求,而应用服务器对每个请求也是比较快的,看来 是请求数太高导致需要排队等待,响应速度变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,提升系统的并发处理能力,使得服务器的负载压力不再成为整个系统的瓶颈。
系统架构演化历程-数据库读写分离
享受了一段时间的系统访问量高速增长的幸福后,发现系统又开始变慢了,这次又是什么状况呢,经过查找,发现数据库写入、更新的这些操作的部分数据库连接的资源竞争非常激烈,导致了系统变慢
特征:
多台服务器通过负载均衡同时向外部提供服务,解决单台服务器处理能力和存储空间上限的问题。
描述:
使用集群是系统解决高并发、海量数据问题的常用手段。通过向集群中追加资源,使得服务器的负载压力不在成为整个系统的瓶颈。
系统架构演化历程-反向代理和CDN加速
特征:
采用CDN和反向代理加快系统的 访问速度。
描述:
为了应付复杂的网络环境和不同地区用户的访问,通过CDN和反向代理加快用户访问的速度,同时减轻后端服务器的负载压力。CDN与反向代理的基本原理都是缓存。
系统架构演化历程-分布式文件系统和分布式数据库
随着系统的不断运行,数据量开始大幅度增长,这个时候发现分库后查询仍然会有些慢,于是按照分库的思想开始做分表的工作
特征:
数据库采用分布式数据库,文件系统采用分布式文件系统。
描述:
任何强大的单一服务器都满足不了大型系统持续增长的业务需求,数据库读写分离随着业务的发展最终也将无法满足需求,需要使用分布式数据库及分布式文件系统来支撑。
分布式数据库是系统数据库拆分的最后方法,只有在单表数据规模非常庞大的时候才使用,更常用的数据库拆分手段是业务分库,将不同的业务数据库部署在不同的物理服务器上。
系统架构演化历程-使用NoSQL和搜索引擎
特征:
系统引入NoSQL数据库及搜索引擎。
描述:
随着业务越来越复杂,对数据存储和检索的需求也越来越复杂,系统需要采用一些非关系型数据库如NoSQL和分数据库查询技术如搜索引擎。应用服务器通过统一数据访问模块访问各种数据,减轻应用程序管理诸多数据源的麻烦。
系统架构演化历程-业务拆分
特征:
系统上按照业务进行拆分改造,应用服务器按照业务区分进行分别部署。
描述:
为了应对日益复杂的业务场景,通常使用分而治之的手段将整个系统业务分成不同的产品线,应用之间通过超链接建立关系,也可以通过消息队列进行数据分发,当然更多的还是通过访问同一个数据存储系统来构成一个关联的完整系统。
纵向拆分:
将一个大应用拆分为多个小应用,如果新业务较为独立,那么就直接将其设计部署为一个独立的Web应用系统
纵向拆分相对较为简单,通过梳理业务,将较少相关的业务剥离即可。
横向拆分:将复用的业务拆分出来,独立部署为分布式服务,新增业务只需要调用这些分布式服务
横向拆分需要识别可复用的业务,设计服务接口,规范服务依赖关系。
系统架构演化历程-分布式服务
特征:
公共的应用模块被提取出来,部署在分布式服务器上供应用服务器调用。
描述:
随着业务越拆越小,应用系统整体复杂程度呈指数级上升,由于所有应用要和所有数据库系统连接,最终导致数据库连接资源不足,拒绝服务。
Q:分布式服务应用会面临哪些问题?
A:
(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。
(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。
(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?
(4) 服务多了,沟通成本也开始上升,调某个服务失败该找谁?服务的参数都有什么约定?
(5) 一个服务有多个业务消费者,如何确保服务质量?
(6) 随着服务的不停升级,总有些意想不到的事发生,比如cache写错了导致内存溢出,故障不可避免,每次核心服务一挂,影响一大片,人心慌慌,如何控制故障的影响面?服务是否可以功能降级?或者资源劣化?
Java分布式应用技术基础
分布式服务下的关键技术:消息队列架构
消息对列通过消息对象分解系统耦合性,不同子系统处理同一个消息
分布式服务下的关键技术:消息队列原理
分布式服务下的关键技术:服务框架架构
服务框架通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务框架是一个点对点模型
服务框架面向同构系统
适合:移动应用、互联网应用、外部系统
分布式服务下的关键技术:服务框架原理
分布式服务下的关键技术:服务总线架构
服务总线同服务框架一样,均是通过接口分解系统耦合性,不同子系统通过相同的接口描述进行服务启用
服务总线是一个总线式的模型
服务总线面向同构、异构系统
适合:内部系统
分布式服务下的关键技术:服务总线原理
分布式架构下系统间交互的5种通信模式
request/response模式(同步模式):客户端发起请求一直阻塞到服务端返回请求为止。
Callback(异步模式):客户端发送一个RPC请求给服务器,服务端处理后再发送一个消息给消息发送端提供的callback端点,此类情况非常合适以下场景:A组件发送RPC请求给B,B处理完成后,需要通知A组件做后续处理。
Future模式:客户端发送完请求后,继续做自己的事情,返回一个包含消息结果的Future对象。客户端需要使用返回结果时,使用Future对象的.get(),如果此时没有结果返回的话,会一直阻塞到有结果返回为止。
Oneway模式:客户端调用完继续执行,不管接收端是否成功。
Reliable模式:为保证通信可靠,将借助于消息中心来实现消息的可靠送达,请求将做持久化存储,在接收方在线时做送达,并由消息中心保证异常重试。
五种通信模式的实现方式-同步点对点服务模式
五种通信模式的实现方式-异步点对点消息模式1
五种通信模式的实现方式-异步点对点消息模式2
五种通信模式的实现方式-异步广播消息模式
分布式架构下的服务治理
服务治理是服务框架/服务总线的核心功能。所谓服务治理,是指服务的提供方和消费方达成一致的约定,保证服务的高质量。服务治理功能可以解决将某些特定流量引入某一批机器,以及限制某些非法消费者的恶意访问,并在提供者处理量达到一定程度是,拒绝接受新的访问。
基于服务框架Dubbo的服务治理-服务管理
可以知道你的系统,对外提供了多少服务,可以对服务进行升级、降级、停用、权重调整等操作
可以知道你提供的服务,谁在使用,因业务需求,可以对该消费者实施屏蔽、停用等操作
基于服务框架Dubbo的服务治理-服务监控
可以统计服务的每秒请求数、平均响应时间、调用量、峰值时间等,作为服务集群规划、性能调优的参考指标。
基于服务框架Dubbo的服务治理-服务路由
基于服务框架Dubbo的服务治理-服务保护
基于服务总线OSB的服务治理-功能介绍
基于服务总线OSB的服务治理
Q:Dubbo到底是神马?
A:
淘宝开源的高性能和透明化的RPC远程调用服务框架
SOA服务治理方案
Q:Dubbo原理是?
A:
-结束-