导航:首页 > 编程语言 > 大规模并行处理器编程实战

大规模并行处理器编程实战

发布时间:2023-02-19 00:08:09

A. 上岛咖啡里边什么好吃

很荣幸.本人曾经在厦门的上岛咖啡店里做过吧台长,自认为对上岛还算比较熟悉.要问上岛里有什么好吃的.那要看你想吃什么.如果你吃的不是吧台里做的.那我就没办法介绍了..呵呵
首先介绍咖啡.上岛咖啡里的咖啡豆都还不错.我本人比较喜欢喝黄金蓝山.不过价格比较贵.(65元一杯)一般价格的建议喝普通的蓝山或者摩卡或者曼特宁都还不错.(普通的在25元到45元之间)花式咖啡也有好喝的.比如漂浮冰咖啡.(28元)它是用冰咖啡加冰淇淋做的.口感不错哦.还有冰拿铁咖啡(25元一杯)也很好!建议试试!
在下来介绍一些简餐.上岛里的三明治有好几种.有一种很好吃.叫总汇三明治.(28元一份)它是用土司.鸡蛋.火腿片.酸黄瓜.培根肉片.西红柿.和撒拉酱做的..可以吃吃看.我觉得好好吃..!
在一个就是黑胡椒牛排.虽然很便宜.(具体价格忘了.因为我不是做厨房的)但是很好吃,建议试试!
总之上岛里.好吃的很多.可以慢慢选择!但是吃久了也会腻.就象我..进去上班到出来的时候都胖了。

B. 什么叫微处理器的并行操作方式

以8086为例,执行单元(运算器) 和 总线接口-指令队列单元
这两部分同时工作就是一种并行操作方式,执行单元从指令队列
头部获取指令,只要队列不是空的,它就能一直执行无需等待。
同一时间内,总线接口单元从内存中读取指令,填入队列尾部,
尽量保证队列处于“满”的状态(8086满队列是六条指令)。

也就是说,取指令和执行指令并行完成,基本上互不干扰。

但是,当执行单元遇到跳转指令(包括有条件跳转条件满足),
则需要清空队列,从跳转到的新位置开始重新读取指令,
这时候就要等待总线接口单元从“空”开始重新填队列了。

这也是为什么更高级的CPU上面要加上分支指令预测和预取
单元,尽量把跳转还是不跳转的问题预测准确,争取正好
提前取到应该读取的新位置处的指令队列的原因。

C. 并行处理的并行算法的基本策略

在并行处理技术中所使用的算法主要遵循三种策略:
1.分而治之法:也就是把多个任务分解到多个处理器或多个计算机中,然后再按照一定的拓扑结构来进行求解。
2.重新排序法:分别采用静态或动态的指令词度方式。
3.显式/隐式并行性结合:显式指的是并行语言通过编译形成并行程序,隐式指的是串行语言通过编译形成并行程序,显式/隐式并行性结合的关键就在于并行编译,而并行编译涉及到语句、程序段、进程以及各级程序的并行性。
二、并行性描述定义
利用计算机语言进行并行性描述的时候主要有三种方案:
1.语言扩展方案:也就是利用各种语言的库函数来进行并行性功能的扩展。
2.编译制导法:也称为智能编译,它是隐式并行策略的体现,主要是由并行编译系统进行程序表示、控制流的分析、相关分析、优化分析和并行化划分,由相关分析得到方法库管理方案,由优化分析得到知识库管理方案,由并行化划分得到程序重构,从而形成并行程序。
3.新的语言结构法:这是显式并行策略的体现。也就是建立一种全新的并行语言的体系,而这种并行语言通过编译就能直接形成并行程序。
三、并行软件
并行软件可分成并行系统软件和并行应用软件两大类,并行系统软件主要指并行编译系统和并行操作系统,并行应用软件主要指各种软件工具和应用软件包。在软件中所牵涉到的程序的并行性主要是指程序的相关性和网络互连两方面。
1.程序的相关性:程序的相关性主要分为数据相关、控制相关和资源相关三类。
数据相关说明的是语句之间的有序关系,主要有流相关、反相关、输出相关、I/O相关和求知相关等,这种关系在程序运行前就可以通过分析程序确定下来。数据相关是一种偏序关系,程序中并不是每一对语句的成员都是相关联的。可以通过分析程序的数据相关,把程序中一些不存在相关性的指令并行地执行,以提高程序运行的速度。
控制相关指的是语句执行次序在运行前不能确定的情况。它一般是由转移指令引起的,只有在程序执行到一定的语句时才能判断出语句的相关性。控制相关常使正在开发的并行性中止,为了开发更多的并行性,必须用编译技术克服控制相关。
而资源相关则与系统进行的工作无关,而与并行事件利用整数部件、浮点部件、寄存器和存储区等共享资源时发生的冲突有关。软件的并行性主要是由程序的控制相关和数据相关性决定的。在并行性开发时往往把程序划分成许多的程序段——颗粒。颗粒的规模也称为粒度,它是衡量软件进程所含计算量的尺度,一般用细、中、粗来描述。划分的粒度越细,各子系统间的通信时延也越低,并行性就越高,但系统开销也越大。因此,我们在进行程序组合优化的时候应该选择适当的粒度,并且把通讯时延尽可能放在程序段中进行,还可以通过软硬件适配和编译优化的手段来提高程序的并行度。
2.网络互连:将计算机子系统互连在一起或构造多处理机或多计算机时可使用静态或动态拓扑结构的网络。静态网络由点一点直接相连而成,这种连接方式在程序执行过程中不会改变,常用来实现集中式系统的子系统之间或分布式系统的多个计算结点之间的固定连接。动态网络是用开关通道实现的,它可动态地改变结构,使之与用户程序中的通信要求匹配。动态网络包括总线、交叉开关和多级网络,常用于共享存储型多处理机中。在网络上的消息传递主要通过寻径来实现。常见的寻径方式有存储转发寻径和虫蚀寻径等。在存储转发网络中以长度固定的包作为信息流的基本单位,每个结点有一个包缓冲区,包从源结点经过一系列中间结点到达目的结点。存储转发网络的时延与源和目的之间的距离(段数)成正比。而在新型的计算机系统中采用虫蚀寻径,把包进一步分成一些固定长度的片,与结点相连的硬件寻径器中有片缓冲区。消息从源传送到目的结点要经过一系列寻径器。同一个包中所有的片以流水方式顺序传送,不同的包可交替地传送,但不同包的片不能交叉,以免被送到错误的目的地。虫蚀寻径的时延几乎与源和目的之间的距离无关。在寻径中产生的死锁问题可以由虚拟通道来解决。虚拟通道是两个结点间的逻辑链,它由源结点的片缓冲区、结点间的物理通道以及接收结点的片缓冲区组成。物理通道由所有的虚拟通道分时地共享。虚拟通道虽然可以避免死锁,但可能会使每个请求可用的有效通道频宽降低。因此,在确定虚拟通道数目时,需要对网络吞吐量和通信时延折衷考虑。
四、硬件技术在硬件技术方面主要从处理机、存储器和流水线三个方面来实现并行。
1.处理机:主要的处理机系列包括CISC、RISC、超标量、VL1W、超流水线、向量以及符号处理机。
传统的处理机属于复杂指令系统计算(CISC)结构。指令系统大,指令格式可变,通用寄存器个数较少,基本上使用合一的指令与数据高速缓存,时钟频率较低,CPI较高,大多数利用ROM 实现微码控制CPU,而当今的精简指令系统计算(RISC)处理机指令格式简单规范,面向寄存器堆,采用重叠寄存器窗口技术,具有多级Cache,多种流水线结构,强调编译优化技术,时钟频率快,CPI低,大多数用硬连线控制CPU。
CISC或RISC标量处理机都可以采用超标量或向量结构来改善性能。标量处理机在每个周期内只发射一条指令并要求周期只完成从流水线来的一条指令。而在超标量处理机中,使用了多指令流水线,每个周期要发射多条指令并产生多个结果。由于希望程序中有许多的指令级并行性,因此超标量处理机更要依靠优化编译器去开发并行性。
VL1W 结构是将水平微码和超标量处理这两种普遍采用的概念结合起来产生的。典型的超长指令字VL1W 机器指令字长度有数百位。在VLlW 处理机中,多个功能部件是并发工作的,所有的功能部件共享使用公用大型寄存器堆,由功能部件同时执行的各种操作是用VL1W 指令来同步的,每条指令可指定多个操作。VL1W 指令译码比超标量指令容易,但在开发不同数量的并行性时总是需要不同的指令系统。VL1W 主要是开发标量操作之间的并行性,它的成功与否很大程度取决于代码压缩的效率,其结构和任何传统的通用处理机完全不兼容。即使同一结构的不同实现也不大可能做到彼此二进制兼容。VL1W 的主要优点在于它的硬件结构和指令系统简单,在科学应用领域可以发挥良好作用,但在一般应用场合可能并不很好用。
向量处理机对数组执行向量指令,每条指令都包含一串重复的操作。它是专门设计用来完成向量运算的协处理机,通常用于多流水线超级计算机中。向量处理机可以利用循环级展开所得的并行性,它可以附属于任何标量处理机。专用的向量流水线可以在循环控制中消除某些软件开销,它的效果与优化编译器将顺序代码向量化的性能很有关系。从理论上说,向量机可以具有和超标量处理机同样的性能,因此可以说向量机的并行性与超标量机相同。
符号处理机是为AI应用而研制的,已用于定理证明、模式识别、专家系统、知识工程、文本检索、科学以及机器智能等许多应用领域。在这些应用中,数据和知识表达式、原语操作、算法特性、存储器、I/0和通信以及专用的结构特性与数值计算是不一样的,符号处理机也称为逻辑程序设计语言处理机、表处理语言处理机或符号变换器。符号处理并不和数值数据打交道,它处理的是逻辑程序、符号表、对象、剧本、黑板、产生式系统、语义网络、框架以及人工神经网络等问题。这些操作需要专门的指令系统,通常不使用浮点操作。
2.存储器:存储设备按容量和存取时间从低到高可分为寄存器、高速缓存、主存储器、磁盘设备和磁带机五个层次。较低层存储设备与较高层的相比,存取速度较快、容量较小,每字节成本较高、带宽较宽、传输单位较小。
存放在存储器层次结构中的信息满足三个重要特性:包含性、一致性和局部性。所谓包含性,指的是一个信息字的复制品可以在比它高的所有层中找到,而如果在高层中丢失了一个信息,则在比它低的所有层中此信息也将丢失。CPU 和高速缓存之间的信息传送是按字进行的,高速缓存和主存储器间用块作为数据传送的基本单位,主存和磁盘之间又是以页面为基本单位来传送信息的,而在磁盘和磁带机之间的数据传送则是按文件级处理的。所谓一致性要求的是同一个信息项与后继存储器层次上的副本是一致的。也就是说,如果在高速缓存中的一个字被修改过,那么在所有更高层上该字的副本也必须立即或最后加以修改。为了尽量减少存储器层次结构的有效存取时间,通常把频繁使用的信息放在较低层次。维护存储器层次结构一致性一般有两种策略,一种是写直达策略,也就是如果,则立即在所有高层存储器中进行同样的修改;另一种是写回策略,也就是在较低层中对信息进行修改后并不立即在高层存储器中进行相应的修改,而是等到该信息将被替换或将从低层中消失时才在所有高层存储器中进行同样的修改。甚至可以将写直达和写回策略的优点结合起来,形成写一次协议来维护存储器的一致性。
存储器的层次结构是在一种程序行为——访问的局部性基础上开发出来的。主要有时间局部性、空间局部性和顺序局部性。时间局部性指的是最近的访问项很可能在不久的将来再次被访问。它往往会引起对最近使用区域的集中访问。空间局部性表示一种趋势,指的是一个进程访问的各项其地址彼此很近。顺序局部性指的是在典型程序中,除非是转移指令,一般指令都是顺序执行的。
在多处理机系统中一般使用共享存储器。对共享存储器的组织一般采用低位交叉、高位交叉、高低位交叉三种方法。低位交叉又称并发存取,它是把相邻的地址放在相邻的存储器模块中,在访问时不容易产生冲突,并行性较好,但可靠性容错能力和扩展性均较差。高位交叉又称允许同时存取,它是把相邻地址分配到同一个存储器模块中,可靠性、容错能力和扩展性均较强,但访问时易产生冲突,带宽较窄,并行性较差。高低位交叉存取又称C—s存取,它是结合了高位交叉和低位交叉两种方法的优点,既解决了冲突问题,又能有效地提高容错能力和并行性,最适合于向量处理机结构。
3.流水线:流水线技术主要有指令流水线技术和运算流水线技术两种。
指令流水线技术主要目的是要提高计算机的运行效率和吞吐率。它主要通过设置预取指令缓冲区、设置多功能部件、进行内部数据定向、采取适当的指令调度策略来实现。指令调度的策略主要有静态和动态两种,静态词度是基于软件的,主要由编译器完成,动态词度是基于硬件的,主要是通过硬件技术进行。
运算流水线主要有单功能流水线和多功能流水线两种。其中多功能流水线又可分为静态流水线和动态流水线。静态流水线技术只用来实现确定的功能,而动态流水线可以在不同时间重新组合,实现不同的功能,它除流线连接外,还允许前馈和反馈连接,因此也称为非线性流水线。这些前馈和反馈连接使得进入流水线的相继事件的词度变得很不简单。由于这些连接,流水线不一定从最后一段输出。根据不同的数据流动模式,人们可以用同一条流水线求得不同功能的值。
并行计算机发展简述
40 年代开始的现代计算机发展历程可以分为两个明显的发展时代:串行计算时代、并行计算时代。每一个计算时代都从体系结构发展开始,接着是系统软件(特别是编译器与操作系统)、应用软件,最后随着问题求解环境的发展而达到顶峰。创建和使用并行计算机的主要原因是因为并行计算机是解决单处理器速度瓶颈的最好方法之一。
并行计算机是由一组处理单元组成的,这组处理单元通过相互之间的通信与协作,以更快的速度共同完成一项大规模的计算任务。因此,并行计算机的两个最主要的组成部分是计算节点和节点间的通信与协作机制。并行计算机体系结构的发展也主要体现在计算节点性能的提高以及节点间通信技术的改进两方面。
60 年代初期,由于晶体管以及磁芯存储器的出现,处理单元变得越来越小,存储器也更加小巧和廉价。这些技术发展的结果导致了并行计算机的出现,这一时期的并行计算机多是规模不大的共享存储多处理器系统,即所谓大型主机(Mainframe)。IBM360 是这一时期的典型代表。
到了60 年代末期,同一个处理器开始设置多个功能相同的功能单元,流水线技术也出现了。与单纯提高时钟频率相比,这些并行特性在处理器内部的应用大大提高了并行计算机系统的性能。伊利诺依大学和Burroughs 公司此时开始实施IlliacIV 计划,研制一台64 个CPU 的SIMD 主机系统,它涉及到硬件技术、体系结构、I/O 设备、操作系统、程序设计语言直至应用程序在内的众多研究课题。不过,当一台规模大大缩小了的16CPU 系统终于在1975 年面世时,整个计算机界已经发生了巨大变化。
首先是存储系统概念的革新,提出虚拟存储和缓存的思想。IBM360/85 系统与360/91是属于同一系列的两个机型,360/91 的主频高于360/85,所选用的内存速度也较快,并且采用了动态调度的指令流水线;但是,360/85 的整体性能却高于360/91,唯一的原因就是前者采用了缓存技术,而后者则没有。
其次是半导体存储器开始代替磁芯存储器。最初,半导体存储器只是在某些机器被用作缓存,而CDC7600 则率先全面采用这种体积更小、速度更快、可以直接寻址的半导体存储器,磁芯存储器从此退出了历史舞台。与此同时,集成电路也出现了,并迅速应用到了计算机中。元器件技术的这两大革命性突破,使得IlliacIV 的设计者们在底层硬件以及并行体系结构方面提出的种种改进都大为逊色。
1976 年CRAY-1 问世以后,向量计算机从此牢牢地控制着整个高性能计算机市场15 年。CRAY-1 对所使用的逻辑电路进行了精心的设计,采用了我们如今称为RISC 的精简指令集,还引入了向量寄存器,以完成向量运算。这一系列全新技术手段的使用,使CRAY-1 的主频达到了80MHz。
微处理器随着机器的字长从4 位、8 位、16 位一直增加到32 位,其性能也随之显着提高。正是因为看到了微处理器的这种潜力,卡内基- 梅隆大学开始在当时流行的DECPDP11 小型计算机的基础上研制成功一台由16 个PDP11/40 处理机通过交叉开关与16 个共享存储器模块相连接而成的共享存储多处理器系统C.mmp。
从80 年代开始,微处理器技术一直在高速前进。稍后又出现了非常适合于SMP 方式的总线协议,而伯克利加州大学则对总线协议进行了扩展,提出了Cache 一致性问题的处理方案。从此,C.mmp 开创出的共享存储多处理器之路越走越宽;现在,这种体系结构已经基本上统治了服务器和桌面工作站市场。
同一时期,基于消息传递机制的并行计算机也开始不断涌现。80 年代中期,加州理工成功地将64 个i8086/i8087 处理器通过超立方体互连结构连结起来。此后,便先后出现了Intel iPSC 系列、INMOS Transputer 系列,Intel Paragon 以及IBM SP 的前身Vulcan 等基于消息传递机制的并行计算机。
80 年代末到90 年代初,共享存储器方式的大规模并行计算机又获得了新的发展。IBM将大量早期RISC 微处理器通过蝶形互连网络连结起来。人们开始考虑如何才能在实现共享存储器缓存一致的同时,使系统具有一定的可扩展性(Scalability)。90 年代初期,斯坦福大学提出了DASH 计划,它通过维护一个保存有每一缓存块位置信息的目录结构来实现分布式共享存储器的缓存一致性。后来,IEEE 在此基础上提出了缓存一致性协议的标准。
90 年代以来,主要的几种体系结构开始走向融合。属于数据并行类型的CM-5 除大量采用商品化的微处理器以外,也允许用户层的程序传递一些简单的消息;CRAY T3D是一台NUMA 结构的共享存储型并行计算机,但是它也提供了全局同步机制、消息队列机制,并采取了一些减少消息传递延迟的技术。
随着商品化微处理器、网络设备的发展,以及MPI/PVM 等并行编程标准的发布,机群架构的并行计算机出现。IBM SP2 系列机群系统就是其中的典型代表。在这些系统中,各个节点采用的都是标准的商品化计算机,它们之间通过高速网络连接起来。
今天,越来越多的并行计算机系统采用商品化的微处理器加上商品化的互连网络构造,这种分布存储的并行计算机系统称为机群。国内几乎所有的高性能计算机厂商都生产这种具有极高性能价格比的高性能计算机,并行计算机就进入了一个新的时代,并行计算的应用达到了前所未有的广度和深度。
并行计算机随着微处理芯片的发展,已经进入了一个新时代。目前并行计算机的性能已经突破20PFLOPS,正在向百亿亿次发展。我国并行计算机的研制已经走在世界前列。2003年由联想公司生产的深腾6800 在2003 年11 月世界TOP500 排名中位列第14 名,2004 年曙光公司生产的曙光4000A 在2004 年6 月的世界TOP500 排名中位列第10 名,这是我国公开发布的高性能计算机在世界TOP500 中首次进入前十名,这标志着我国在并行计算机系统的研制和生产中已经赶上了国际先进水平,为提高我国的科学研究水平奠定了物质基础。2013年国际超级计算机大会最新发布的世界超级计算机500强排名中,国防科技大学研制的天河二号超级计算机系统,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首。
从TOP500 的前10 名来看,美国仍然是超级计算机的最大拥有者。按照世界TOP500 的统计数据来分析,美国在计算能力上占有近全世界的一半,在TOP500 中的所有计算机中拥有的数量超过50%。

D. 我想通过如下命令观察出CPU与CLA是并行运行的,可行么

一。主频
主频也叫时钟频率,单位是MHz(或GHz),用来表示CPU的运算、处理数据的速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel英特尔和AMD,在这点上也存在着很大的争议,从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一块1G的全美达处理器来做比较,它的运行效率相当于2G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz至强( Xeon)/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线、总线等等各方面的性能指标。
主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
二。外频
外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈,下面的前端总线介绍谈谈两者的区别。
三。前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。
四。CPU的位和字长
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
五。倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Inter 酷睿2 核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,现在AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。
六。缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。
L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
七。CPU扩展指令集
CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3、SSE4系列和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。通常会把CPU的扩展指令集称为“CPU的指令集”。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE4也是最先进的指令集,英特尔酷睿系列处理器已经支持SSE4指令集,AMD会在未来双核心处理器当中加入对SSE4指令集的支持,全美达的处理器也将支持这一指令集。
八。CPU内核和I/O工作电压
从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。
九。制造工艺
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm、65nm、45纳米。最近官方已经表示有32纳米的制造工艺了。
十。指令集
(1)CISC指令集
CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。
要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、Pentium 3,Pentium 4系列,最后到今天的酷睿2系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器CPU两类。
(2)RISC指令集
RISC是英文“Reced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。
目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。
3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。
Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。
IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。
4)X86-64 (AMD64 / EM64T)
AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑寻址,同时提供转换为32位寻址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。
x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。
而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。
应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。
十一。超流水线与超标量
在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。
超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。
十二。封装形式
CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。
十三。多线程
同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制处理器上的结构状态,让同一个处理器上的多个线程同步执行并共享处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT处理器几乎和传统的宽发射超标量处理器一样。SMT最具吸引力的是只需小规模改变处理器核心的设计,几乎不用增加额外的成本就可以显着地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有处理器都将支持SMT技术。
十四。多核心
多核心,也指单芯片多处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。与CMP比较, SMT处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前,IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。
2005年下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。
十五。SMP
SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。像双至强,也就是所说的二路,这是在对称处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。
构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。为了能够使得SMP系统发挥高效的性能,操作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位操作系统。即能够进行多任务和多线程处理。多任务是指操作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指操作系统能够使得不同的CPU并行的完成同一个任务 。
要组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers–APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编号,因为两个生产批次的CPU作为双处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。
十六。NUMA技术
NUMA即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中,Cache 的一致性有多种解决方案,需要操作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用NUMA的技术加以扩展,是这两种技术的结合。

E. 《R并行编程实战》epub下载在线阅读全文,求百度网盘云资源

《R并行编程实战》((美)西蒙 R.查普尔(Simon R.Chapple))电子书网盘下载免费在线阅读

链接:https://pan..com/s/1RLlporkNQEi-3P14d5n5tw

提取码:JERB

书名:R并行编程实战

作者:(美)西蒙 R.查普尔(Simon R.Chapple)

出版社:机械工业出版社

出版时间:2017年11月

内容简介

本书是一本构建大规模高效算法的综合性实用书籍,介绍各种并行技术,从R语言的并行版本lapply()的简单应用到基于Hadoop和ApacheSpark框架的高级AWS云。在本书的后,你将了解到影响并行效率的因素,包括:评估代码性能和实现负载平衡;要避免的陷阱,包括死锁和数值不稳定问题;对于你的项目,如何为适合的并行类型构建代码和数据;如何在各种计算机系统中运行R代码获取佳性能。本书针对那些想要超越单线程和内存限制的R程序员,使其从中学习如何实现高效大规模算法,这是对大数据高性能处理的必要条件。

作者简介

About the Authors 关于作者西蒙R. 查普尔(Simon R. Chapple)是一位经验丰富的解决方案架构师和首席软件工程师,从事数据分析和医疗信息系统解决方案和应用的开发超过25年。他也是超级计算机HPC和大数据处理方面的专家。
Simon是Datalytics科技有限公司的首席技术官和管理合伙人,带领一个团队建设下一代大规模数据分析平台,该平台建立在一组由高性能工具、框架和系统所构成的可定制的工具集合基础上,可以使从数据采集、分析到呈现的整个实时处理周期,轻松地部署到任何已有的IT操作环境中。
此前,他在Aridhia信息公司担任产品创新总监,为苏格兰的医疗服务供应商建立了多个新系统,包括为苏格兰18周转诊治疗和癌症患者的管理而提供的一体化病人路径跟踪系统,该系统应用了10个单独数据系统的集成(减少病人等待时间,从而提供好的服务)。他还利用公共云托管监测系统,为实时化疗患者建立了专门的移动系统,该系统在澳大利亚进行了临床试验,受到护士和病人的高度赞扬,“就像在你的起居室里有一位护士……希望所有的化疗病人每天都有天使般的安全舒适的护理环境。”
Simon也是ROpenCL开源软件包的作者之一,该添加包使得用R编写的统计程序可以应用图形加速器芯片中的并行计算能力。

F. ProcessPoolExecutor并行编程

你有个程序要执行CPU密集型工作,你想让他利用多核CPU的优势来运行的快一点。

concurrent.futures 库提供了一个 ProcessPoolExecutor 类, 可被用来在一个单独的Python解释器中执行计算密集型函数。 不过,要使用它,你首先要有一些计算密集型的任务。 我们通过一个简单而实际的例子来演示它。假定你有个Apache web服务器日志目录的gzip压缩包:

进一步假设每个日志文件内容类似下面这样:

下面是一个脚本,在这些日志文件中查找出所有访问过robots.txt文件的主机:

前面的程序使用了通常的map-rece风格来编写。 函数 find_robots() 在一个文件名集合上做map操作,并将结果汇总为一个单独的结果, 也就是 find_all_robots() 函数中的 all_robots 集合。 现在,假设你想要修改这个程序让它使用多核CPU。 很简单——只需要将map()操作替换为一个 concurrent.futures 库中生成的类似操作即可。 下面是一个简单修改版本:

通过这个修改后,运行这个脚本产生同样的结果,但是在四核机器上面比之前快了3.5倍。 实际的性能优化效果根据你的机器CPU数量的不同而不同。

ProcessPoolExecutor 的典型用法如下:

其原理是,一个 ProcessPoolExecutor 创建N个独立的Python解释器, N是系统上面可用CPU的个数。你可以通过提供可选参数给 ProcessPoolExecutor(N) 来修改 处理器数量。这个处理池会一直运行到with块中最后一个语句执行完成, 然后处理池被关闭。不过,程序会一直等待直到所有提交的工作被处理完成。

被提交到池中的工作必须被定义为一个函数。有两种方法去提交。 如果你想让一个列表推导或一个 map() 操作并行执行的话,可使用 pool.map() :

另外,你可以使用 pool.submit() 来手动的提交单个任务:

如果你手动提交一个任务,结果是一个 Future 实例。 要获取最终结果,你需要调用它的 result() 方法。 它会阻塞进程直到结果被返回来。

如果不想阻塞,你还可以使用一个回调函数,例如:

回调函数接受一个 Future 实例,被用来获取最终的结果(比如通过调用它的result()方法)。 尽管处理池很容易使用,在设计大程序的时候还是有很多需要注意的地方,如下几点:

一旦启动你不能控制子进程的任何行为,因此最好保持简单和纯洁——函数不要去修改环境。

它会克隆Python解释器,包括fork时的所有程序状态。 而在Windows上,克隆解释器时不会克隆状态。 实际的fork操作会在第一次调用 pool.map() 或 pool.submit() 后发生。

你应该在创建任何线程之前先创建并激活进程池(比如在程序启动的main线程中创建进程池)。

G. 大数据和人工智能的联系与区别是什么

了解大数据与人工智能的区别与联系,首先我们从认知和理解大数据和人工智能的概念开始。

1、大数据

大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。

2、人工智能

人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。

3、大数据与人工智能

大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。

目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。

H. 毕业设计 我想阐述一下并行计算的发展

从20世纪40年代开始的现代计算机发展历程可以分为两个明显的发展时代:串行计算时代、并行计算时代。每一个计算时代都从体系结构发展开始,接着是系统软件(特别是编译器与操作系统)、应用软件,最后随着问题求解环境的发展而达到顶峰。

并行计算机是由一组处理单元组成的。这组处理单元通过相互之间的通信与协作,以更快的速度共同完成一项大规模的计算任务。因此,并行计算机的两个最主要的组成部分是计算节点和节点间的通信与协作机制。并行计算机体系结构的发展也主要体现在计算节点性能的提高以及节点间通信技术的改进两方面。

节点性能不断进步

20世纪60年代初期,由于晶体管以及磁芯存储器的出现,处理单元变得越来越小,存储器也更加小巧和廉价。这些技术发展的结果导致了并行计算机的出现。这一时期的并行计算机多是规模不大的共享存储多处理器系统,即所谓大型主机。IBM 360是这一时期的典型代表。

到了20世纪60年代末期,同一个处理器开始设置多个功能相同的功能单元,流水线技术也出现了。与单纯提高时钟频率相比,这些并行特性在处理器内部的应用大大提高了并行计算机系统的性能。伊利诺依大学和Burroughs公司此时开始实施Illiac Ⅳ计划,研制一台64颗CPU的SIMD主机系统,它涉及到硬件技术、体系结构、I/O设备、操作系统、程序设计语言直至应用程序在内的众多研究课题。不过,当一台规模大大缩小的原型系统(仅使用了16颗CPU)终于在1975年面世时,整个计算机界已经发生了巨大变化。

首先是存储系统概念的革新,提出虚拟存储和缓存的思想。以IBM 360/85和IBM 360/91为例,两者是属于同一系列的两个机型,IBM 360/91的主频高于IBM 360/85,所选用的内存速度也较快,并且采用了动态调度的指令流水线。但是,IBM 360/85的整体性能却高于IBM 360/91,惟一的原因就是前者采用了缓存技术,而后者则没有。

其次是半导体存储器开始代替磁芯存储器。最初,半导体存储器只是在某些机器中被用作缓存,而CDC7600则率先全面采用这种体积更小、速度更快、可以直接寻址的半导体存储器,磁芯存储器从此退出了历史舞台。与此同时,集成电路也出现了,并迅速应用到计算机中。元器件技术的这两大革命性突破,使得Illiac Ⅳ的设计者们在底层硬件以及并行体系结构方面提出的种种改进都大为逊色。

处理器高速发展

1976年Cray-1问世以后,向量计算机从此牢牢地控制着整个高性能计算机市场15年。Cray-1对所使用的逻辑电路进行了精心的设计,采用了我们如今称为RISC的精简指令集,还引入了向量寄存器,以完成向量运算。这一系列技术手段的使用,使Cray-1的主频达到了80MHz。

微处理器随着机器的字长从4位、8位、16位一直增加到32位,其性能也随之显着提高。正是因为看到了微处理器的这种潜力,卡内基·梅隆大学开始在当时流行的DEC PDP-11小型计算机的基础上研制一台由16台PDP-11/40处理机通过交叉开关与16个共享存储器模块相连接而成的共享存储多处理器系统C.mmp。

从20世纪80年代开始,微处理器技术一直在高速前进。稍后又出现了非常适合于SMP方式的总线协议。而伯克利加州大学则对总线协议进行了扩展,提出了Cache一致性问题的处理方案。从此,C.mmp开创出的共享存储多处理器之路越走越宽。现在,这种体系结构已经基本上统治了服务器和桌面工作站市场。

通信机制稳步前进

同一时期,基于消息传递机制的并行计算机也开始不断涌现。20世纪80年代中期,加州理工学院成功地将64个i8086/i8087处理器通过超立方体互连结构连结起来。此后,便先后出现了Intel iPSC系列、INMOS Transputer系列,Intel Paragon以及IBM SP的前身Vulcan等基于消息传递机制的并行计算机。

20世纪80年代末到90年代初,共享存储器方式的大规模并行计算机又获得了新的发展。IBM将大量早期RISC微处理器通过蝶形互连网络连结起来。人们开始考虑如何才能在实现共享存储器缓存一致的同时,使系统具有一定的可扩展性。20世纪90年代初期,斯坦福大学提出了DASH计划,它通过维护一个保存有每一缓存块位置信息的目录结构来实现分布式共享存储器的缓存一致性。后来,IEEE在此基础上提出了缓存一致性协议的标准。

20世纪90年代至今,主要的几种体系结构开始走向融合。

属于数据并行类型的CM-5除大量采用商品化的微处理器以外,也允许用户层的程序传递一些简单的消息。

Cray T3D是一台NUMA结构的共享存储型并行计算机,但是它也提供了全局同步机制、消息队列机制,并采取了一些减少消息传递延迟的技术。

随着微处理器商品化、网络设备的发展以及MPI/PVM等并行编程标准的发布,集群架构的并行计算机出现开始。IBM SP2系列集群系统就是其中的典型代表。在这些系统中,各个节点采用的都是标准的商品化计算机,它们之间通过高速网络连接起来。
1.2 有限元并行计算的发展和现状
目前,在计算力学领域内,围绕着基于变分原理的有限元法
和基于边界积分方程的边界元法,以及基于现在问世的各种并行
计算机,逐渐形成了一个新的学科分支——有限元并行计算。它
是高效能的,使得许多现在应用串行计算机和串行算法不能解决
或求解不好的大型的、复杂的力学问题能得到满意的解答,故其
发展速度十分惊人。在国际上已经掀起了利用并行机进行工程分
析和研究的高潮。从1975到1995年的二十年间,有关有限元方法
和相应的数值并行计算的文章已发表1000余篇。
有限元并行计算正在向两个方向发展。一是对系统方程组实
施并行求解的各种算法。二是并行分析方法,包括有限元并行算
法和边界元并行算法,前者趋向成熟,而后者的研究较少。对这
一方面的研究,是为了挖掘有限元计算自身潜在的并行性,是有
限元并行计算的根本问题。
1.2.1国内
并行算法的设计和有效实现强烈地依赖于并行机的硬软件环
境。国内仅极少数单位拥有并行机,且机型杂乱,因此研究人员
少,起步晚,而且局限于特定的硬件环境。从有限元分析方法的
内容来看,发表的几十篇研究论文(报告)还未显示出较强的系
统性。
1)南京航空航天大学周树荃教授等在YH-1向量机上实现了刚度
矩阵计算、对称带状矩阵的Cholesky分解和线性方程组的求解等
并行处理。针对不规则结构工程分析问题,他们还采用了变带宽
存贮方法,并实现了刚度矩阵的并行计算以及求解变带宽稀疏线
性方程组的并行直接解法【20】。
2)中国科学院计算中心王荩贤研究员等在基于Transputer芯片
的分布式MIMD系统上,提出了有限元分析中变带宽线性方程组的
并行直接解法,初步完成了一个静力分析程序【21】。
3)重庆大学张汝清教授等借助于ELXSI-6400共享存贮器型MIMD
系统,先后开展了范围比较广泛的并行算法研究,主要成果有:
a)提出了静力分析中子结构解法的并行算法,以及动力分析中模
态综合子结构法的并行算法;
b)从波前法出发,发展了多波前并行算法以求解大型结构分析
问题;
c)从Jacobi块迭代法和加权残差法出发,导出了基于异步控制的
有限元方程并行解法和有限元并行迭代的基本格式;
d)利用图论中的着色理论,实现了刚度矩阵的并行计算;
e)实现了基于有色线剖分的SOR并行迭代解法;
f)实现了子空间迭代法、Lanczos法以及利用多项式割线迭代法
和矢量迭代法求解结构固有频率和模态的并行算法;
g)针对弹塑性分析,提出了一种多波前子结构并行算法;
h)针对弹性接触问题,提出了一种基于参数变分原理的并行解法;
i)实现了一步积分法的并行处理【22】。
4)南京航空航天大学乔新教授等借助于Transputer芯片的分布式
MIMD系统实现了有限元方程组的并行直接解法,并提出了基于子结
构的预处理共轭梯度法的并行计算方法【23】。
此外,浙江大学姚坚【24】、中国科学院西南计算中心马寅国、
东北工学院张铁以及国防科技大学六系也曾对有限元分析的并行计
算开展了一些研究。
上述研究结果表明,国内并行计算方法的研究,在硬件上基于
向量机、分布式并行机和共享存贮式并行机;在内容上,似乎面很
广,但系统性和深度还很不够,软件开发距实际应用和商品化还有
很大距离,对不依赖并行机具体环境的通用并行算法研究还很少,
同样对旨在进行结构有限元分析的并行计算的硬件研究也很少。
1.2.2国外
自从美国国家宇航局(NASA)的A.K.Noor于1975年发表第一篇
有限元并行计算的文章以来,有限元并行处理技术几乎与并行计算
机同步发展。距不完全统计,到1992年,国外已发表了400余篇这方
面的论文,其中后5年的文章篇数是前12年的总和。在研究内容上也
由过去的算法研究发展到了算法、软件和硬件相结合的研究,并针对
一些机型开发了一些实用的大型结构分析软件。
1)有限元机器FEM【25】(Finite Element Machine)。早在70年
代末,就有人发表了有关FEM的论文,1982年美国国家宇航局Langley
研究中心的O.O.Storaasli等撰文详细地介绍了该中心设计的供研究
用的FEM。该机器由1个处理器阵列、1台作为控制器的微机和1个并行
操作系统及一些模块化了的通用并行算法程序组成,用户使用系统的
文本编辑器和控制器的其它特殊功能,能建立有限元计算模型并进行
分析。10多年来,又有一些人在这一方面进行了不懈的努力,但FEM
的发展前景仍然不太令人乐观。
2)心动阵列并行机【26】。心动阵列并行机主要应用于信号和图象
的并行处理,但由于其高效的矩阵计算功能,近年来有人把它应用于
有限元分析,并作了一些有益的尝试。
3)巨型向量机【27】。在有限元分析中越来越显示出巨大的威力,
处于领先的是美国思维公司的CM-2。许多结构分析家把这个具有65536
个处理器的巨型向量机应用于有限元计算,如T.Belyschko等人采用显
式方法,完成了具有32768个单元的壳的非线性有限元计算,并行效率
极高,速度几乎比CRAY X-MP/14并行机高出1个数量级。
4)并行机网络和工作站网络【28】。日本东京大学矢川等借助高速网
络把3台CRAY Y-MP机联成网络进行有限元分析,有限元方程求解采用
的是基于区域分裂技术的共轭梯度法(CGM), 在求解三维弹性问题
时自由度个数超过了100万,系统平均运行速度高达1.74GFLOPS。另外,
他们还基于一个工程工作站网络,在并行环境下进行了类似的研究,
求解问题的自由度数高达20万个。
--
我左看右看前看后看可还是看不过来
这个....那个....我越看越奇怪....
不是我不明白,这世界变化快

I. 超级并行计算机有哪些优势

在并行计算机上应用,必须采用合适的并行算法。算法的并行性直接影响着计算机的使用效率和实际的解题速度。《科技日报》1991年1月4日评出“1990年世界十大科技成就”,其中第六项称:“美国6月20日宣布用1000台计算机(组成超级并行计算机系统——笔者注)成功地将一个155位的大数分解为三个因子的乘积,它们分别是7位、49位与99位数,主持这项工作的美国贝尔实验室认为这是计算数学领域的一大突破。”因为采用了1990年英国科学家波拉德等人发明的并行计算新方法,计算机只运行了几个月就完成了大数因子分解,若用老方法在每秒10亿次计算机上要算1059年。

科学技术与社会的发展需要更高速、更大容量的并行计算机。例如,为了使天气预报更为准确,就需要增加空间的分点和新的物理参量,而各个方向的分点数仅增加一倍都会使目前最快的计算机不能在一天内完成工作。另外,图像和声音的引入也使计算机对速度和容量的要求更高。随着大规模并行处理技术的不断发展与成熟、突破,TFLops速度大关的超级计算机已指日可待,并必将在远距离协作、大规模数据共享和多媒体支持方面获得成功,使计算机真正做到“瞬时间”的“眼观六路,耳听八方”。

(1)流水线技术:像工业生产中的流水线作业一样,它改进了计算机运算和控制部件的性能。

(2)功能结构:应用各自独立的部件,执行不同的功能,并允许它们同时处理各种数据。采用流水线与功能结构技术的计算机称为向量计算机。

(3)阵列结构:提供由很多相同功能处理部件组成的阵列,在统一控制下它们同时执行相同的操作,但操作的对象(数据)各不相同。这样的并行计算机称为单指令流多数据流。

(4)多处理器结构:提供多台处理机,它们可同时执行各自的操作并相互通信。这种并行计算机称为多指令流多数据流。

(5)大规模并行处理(MPP)技术:通过高速网络通信,在专门的管理机制下使多台计算机同时工作来完成同一个任务。

阅读全文

与大规模并行处理器编程实战相关的资料

热点内容
查看dns地址命令 浏览:765
android录屏工具 浏览:838
成都互动直播系统源码 浏览:953
usb蓝牙android 浏览:405
服务器显示error1什么意思 浏览:708
python代码精简 浏览:457
文件加密了怎么找到了 浏览:193
jellyfin插件怎么选择主服务器 浏览:836
asp用户注册源码 浏览:48
什么是照片压缩文件 浏览:392
java调用js代码 浏览:979
昆山市民app怎么修改身份信息 浏览:779
php登陆次数 浏览:744
python字符转成数字 浏览:822
海川用的是什么服务器 浏览:376
口才是练出来的pdf 浏览:458
云服务器哪个公司性价比高 浏览:517
源码论坛打包 浏览:558
php怎么做成word 浏览:692
python批量生成密钥 浏览:492