‘壹’ python下的抽象类的用途和意义
抽象方法是基类中定义的方法,但却没有任何实现。在java中,可以把方法申明成一个接口。而在python中实现一个抽象方法的简单的方法是:x0dx0aclass Sheep(object):x0dx0adef get_size(self):x0dx0araise NotImplementedErrorx0dx0a任何从Sheep继承下来的子类必须实现get_size方法。否则就会产生一个错误。但这种实现方法有个缺点。定义的子类只有调用那个方法时才会抛错。这里有个简单方法可以在类被实例化后触发它。使用python提供的abc模块。x0dx0aimport abcx0dx0aclass Sheep(object):x0dx0a__metaclass__ = [email protected] get_size(self):x0dx0areturnx0dx0a这里实例化Sheep类或任意从其继承的子类(未实现get_size)时候都会抛出异常。x0dx0a因此,通过定义抽象类,可以定义子类的共同method(强制其实现)。
‘贰’ Python语言到底有哪些优点呢
多年来,Python在各种流行编程语言中一直排名靠前,它自身的特点让Python成为世界上功能最丰富的编程语言之一,可以适用于任何项目开发,因此Python深受开发工程师的喜爱。那到底Python自身有哪些优点使得Python深得大家的喜欢,下面和四川优就业的小编一起来看看吧。
一、简单易学
Python语言的优点第一个就是简单易学,Python最大的优点之一是具有伪代码的本质,它使我们在开发Python程序时,专注的是解决问题,而不是搞明白语言本身。Python采用C语言进行开发,但是Python不再有C语言中的指针等复杂的数据类型存在。举个例子来说,同样一个程序,使用C可能需要1000行代码,使用Java需要100行代码,而使用Python则只需要20行代码。这也就是很多新手小白选择学习Python的原因,它没有那么复杂的逻辑,代码简洁规范,关键字也相对较少,说明文档还非常简单,极易上手。
二、免费开源
简单地说,我们不用花一分钱,就可以直接下载安装使用,自由的发布软件的拷贝、阅读它的源代码,还可以对其源码进行修改,并能把它的一部分用于新的自由软件中。
三、开发速度快、效率高
Python被称为“胶水语言”,并且有丰富强大库,可以实现很多强大的功能,因此Python运行速度非常快,开发效率非常高。
四、面向对象
Python具有很强的面向对象特性,同时也简单化了面向对象的实现,可以消除保护类型、抽象类、接口等面向对象的元素。与其他主要的语言如C++和Java相比,Python以一种非常强大又简单的方式实现面向对象编程。
除了以上的这些优点,Python还有很多像可移植性强、可扩展性、可嵌入性等优势。也正是这些优点,所以造就了功能强大的Python语言。
‘叁’ python的特性是什么
Python是一门大家都比较熟悉的一门计算机语言,也是比较简单的一门计算机语言,相对于来说更加简单一些,而且也是不少人进入行业内的首要选择。
Python是一门好用又简单易学的计算机编程语言,在近几年中,Python受到了不少IT人士的追捧,热度也是越来越高了,成为了我们入门首选的编程语言,为什么呢?因为Python具有非常广泛的应用范围,在人工智能、web开发之中具有非常好的应用,同时在金融分析、爬虫等领域也具有很大的作用。
1、Python采用C语言进行开发,但是Python不再有C语言中的指针等复杂的数据类型存在。
2、Python具有很强的面向对象特性,同时也简单化了面向对象的实现,可以消除保护类型、抽象类、接口等面向对象的元素。
3、Python代码可以使用空格或者制表符缩进的方式分割代码。
4、Python仅仅只有31个保留字,而且没有分号、begin、end等标记。
5、Python是强类型的语言,变量创建之后会对应一种数据类型,出现在统一表达式中的不同类型的变量需要做类型转换。
‘肆’ 如何在Python中使用static,class,abstract方法
方法在Python中是如何工作的
方法就是一个函数,它作为一个类属性而存在,你可以用如下方式来声明、访问一个函数:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>
Python在告诉你,属性_get_size是类Pizza的一个未绑定方法。这是什么意思呢?很快我们就会知道答案:
Python
1
2
3
4
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)
我们不能这么调用,因为它还没有绑定到Pizza类的任何实例上,它需要一个实例作为第一个参数传递进去(Python2必须是该类的实例,Python3中可以是任何东西),尝试一下:
Python
1
2
>>> Pizza.get_size(Pizza(42))
42
太棒了,现在用一个实例作为它的的第一个参数来调用,整个世界都清静了,如果我说这种调用方式还不是最方便的,你也会这么认为的;没错,现在每次调用这个方法的时候我们都不得不引用这个类,如果不知道哪个类是我们的对象,长期看来这种方式是行不通的。
那么Python为我们做了什么呢,它绑定了所有来自类_Pizza的方法以及该类的任何一个实例的方法。也就意味着现在属性get_size是Pizza的一个实例对象的绑定方法,这个方法的第一个参数就是该实例本身。
Python
1
2
3
4
>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42
和我们预期的一样,现在不再需要提供任何参数给_get_size,因为它已经是绑定的,它的self参数会自动地设置给Pizza实例,下面代码是最好的证明:
Python
1
2
3
>>> m = Pizza(42).get_size
>>> m()
42
更有甚者,你都没必要使用持有Pizza对象的引用了,因为该方法已经绑定到了这个对象,所以这个方法对它自己来说是已经足够了。
也许,如果你想知道这个绑定的方法是绑定在哪个对象上,下面这种手段就能得知:
Python
1
2
3
4
5
6
7
>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> # You could guess, look at this:
...
>>> m == m.__self__.get_size
True
显然,该对象仍然有一个引用存在,只要你愿意你还是可以把它找回来。
在Python3中,依附在类上的函数不再当作是未绑定的方法,而是把它当作一个简单地函数,如果有必要它会绑定到一个对象身上去,原则依然和Python2保持一致,但是模块更简洁:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dd0>
静态方法
静态方法是一类特殊的方法,有时你可能需要写一个属于这个类的方法,但是这些代码完全不会使用到实例对象本身,例如:
Python
1
2
3
4
5
6
7
class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y
def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)
这个例子中,如果把_mix_ingredients作为非静态方法同样可以运行,但是它要提供self参数,而这个参数在方法中根本不会被使用到。这里的@staticmethod装饰器可以给我们带来一些好处:
Python不再需要为Pizza对象实例初始化一个绑定方法,绑定方法同样是对象,但是创建他们需要成本,而静态方法就可以避免这些。
Python
1
2
3
4
5
6
>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True
可读性更好的代码,看到@staticmethod我们就知道这个方法并不需要依赖对象本身的状态。
可以在子类中被覆盖,如果是把mix_ingredients作为模块的顶层函数,那么继承自Pizza的子类就没法改变pizza的mix_ingredients了如果不覆盖cook的话。
类方法
话虽如此,什么是类方法呢?类方法不是绑定到对象上,而是绑定在类上的方法。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>>
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42
无论你用哪种方式访问这个方法,它总是绑定到了这个类身上,它的第一个参数是这个类本身(记住:类也是对象)。
什么时候使用这种方法呢?类方法通常在以下两种场景是非常有用的:
工厂方法:它用于创建类的实例,例如一些预处理。如果使用@staticmethod代替,那我们不得不硬编码Pizza类名在函数中,这使得任何继承Pizza的类都不能使用我们这个工厂方法给它自己用。
Python
1
2
3
4
5
6
7
class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients
@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())
调用静态类:如果你把一个静态方法拆分成多个静态方法,除非你使用类方法,否则你还是得硬编码类名。使用这种方式声明方法,Pizza类名明永远都不会在被直接引用,继承和方法覆盖都可以完美的工作。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Pizza(object):
def __init__(self, radius, height):
self.radius = radius
self.height = height
@staticmethod
def compute_area(radius):
return math.pi * (radius ** 2)
@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_area(radius)
def get_volume(self):
return self.compute_volume(self.height, self.radius)
抽象方法
抽象方法是定义在基类中的一种方法,它没有提供任何实现,类似于Java中接口(Interface)里面的方法。
在Python中实现抽象方法最简单地方式是:
Python
1
2
3
class Pizza(object):
def get_radius(self):
raise NotImplementedError
任何继承自_Pizza的类必须覆盖实现方法get_radius,否则会抛出异常。
这种抽象方法的实现有它的弊端,如果你写一个类继承Pizza,但是忘记实现get_radius,异常只有在你真正使用的时候才会抛出来。
Python
1
2
3
4
5
6
7
>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "<stdin>", line 3, in get_radius
NotImplementedError
还有一种方式可以让错误更早的触发,使用Python提供的abc模块,对象被初始化之后就可以抛出异常:
Python
1
2
3
4
5
6
7
8
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""
使用abc后,当你尝试初始化BasePizza或者任何子类的时候立马就会得到一个TypeError,而无需等到真正调用get_radius的时候才发现异常。
Python
1
2
3
4
>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: Can't instantiate abstract class BasePizza with abstract methods get_radius
混合静态方法、类方法、抽象方法
当你开始构建类和继承结构时,混合使用这些装饰器的时候到了,所以这里列出了一些技巧。
记住,声明一个抽象的方法,不会固定方法的原型,这就意味着虽然你必须实现它,但是我可以用任何参数列表来实现:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg
这样是允许的,因为Calzone满足BasePizza对象所定义的接口需求。同样我们也可以用一个类方法或静态方法来实现:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None
这同样是正确的,因为它遵循抽象类BasePizza设定的契约。事实上get_ingredients方法并不需要知道返回结果是什么,结果是实现细节,不是契约条件。
因此,你不能强制抽象方法的实现是一个常规方法、或者是类方法还是静态方法,也没什么可争论的。从Python3开始(在Python2中不能如你期待的运行,见issue5867),在abstractmethod方法上面使用@staticmethod和@classmethod装饰器成为可能。
Python
1
2
3
4
5
6
7
8
9
10
11
12
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
ingredient = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients
别误会了,如果你认为它会强制子类作为一个类方法来实现get_ingredients那你就错了,它仅仅表示你实现的get_ingredients在BasePizza中是一个类方法。
可以在抽象方法中做代码的实现?没错,Python与Java接口中的方法相反,你可以在抽象方法编写实现代码通过super()来调用它。(译注:在Java8中,接口也提供的默认方法,允许在接口中写方法的实现)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
default_ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients
class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()
这个例子中,你构建的每个pizza都通过继承BasePizza的方式,你不得不覆盖get_ingredients方法,但是能够使用默认机制通过super()来获取ingredient列表。
打赏支持我翻译更多好文章,谢谢!
‘伍’ python中的concurrent.futures模块
concurrent.futures 模块提供了并发执行调用的高级接口
并发可以使用 threads 执行,使用 ThreadPoolExecutor 或 分离的 processes ,使用 ProcessPoolExecutor 。都实现了同一个接口,这个接口在抽象类 Executor 定义
wait 等待 fs 里面所有的 Future 实例(由不同的 Executors 实例创建的)完成。返回两个命名元祖,第一个元祖名为 done ,存放完成的 futures 对象,第二个元祖名为 not_done ,存放未完成的 futures 。
return_when 参数必须是 concurrent.futures 里面定义的常量: FIRST_COMPLETED , FIRST_EXCEPTION , ALL_COMPLETED
返回一个迭代器, yield 那些完成的 futures 对象。 fs 里面有重复的也只可能返回一次。任何 futures 在调用 as_completed() 调用之前完成首先被 yield 。
Future() 封装了可调用对象的异步执行。 Future 实例可以被 Executor.submit() 方法创建。除了测试之外不应该直接创建。 Future 对象可以和异步执行的任务进行交互
1、抽象类,提供异步调用的方法。不能被直接使用,而是通过构建子类。
2、方法
shutdown(wait=True)
给 executor 发信号,使其释放资源,当 futures 完成执行时。已经 shutdown 再调用 submit() 或 map() 会抛出 RuntimeError 。使用 with 语句,就可以避免必须调用本函数
ThreadPoolExecutor 是 Executor 的子类使用线程池来异步执行调用
如果使用不正确可能会造成死锁,所以 submit 的 task 尽量不要调用 executor 和 futures ,否则很容易出现死锁
默认的max_workers是设备的处理器数目*5
ProcessPoolExecutor 使用 multiprocessing 模块,不受 GIL 锁的约束,意味着只有可以 pickle 的对象才可以执行和返回
__main__ 必须能够被工作子进程导入。所以意味着 ProcessPoolExecutor 在交互式解释器下不能工作。
提交给 ProcessPoolExecutor 的可调用方法里面调用 Executor 或 Future 将会形成死锁。
class concurrent.futures.ProcessPoolExecutor(max_workers=None)
max_workers 默认是处理器的个数
exception concurrent.futures.CancelledError
exception concurrent.futures.TimeoutError
exception concurrent.futures.process.BrokenProcessPool
‘陆’ python基础(abc类)
ABC是Abstract Base Class的缩写。
Python本身不提供抽象类和接口机制,要想实现抽象类,可以借助abc模块。
abc类中常见的方法有:ABCMeta,abstractmethod,classmethod
这是用来生成抽象基础类的元类。由它生成的类可以被直接继承。
通过注册进行具体化抽象类
通过继承具体化抽象类
‘柒’ 大数据主要学习什么呢
大数据主要学习的东西有6个方面:
第一阶段
JavaSE基础核心
第二阶段
数据库关键技术
第三阶段
大数据基础核心
第四阶段
Spark生态体系框架&大数据高薪精选项目
第五阶段
Spark生态体系框架&企业无缝对接项目
第六阶段
Flink流式数据处理框架