㈠ python 面试高频问题:cls到底是什么
上一篇文章介绍了什么是python 中的self,详情请参考:
Python面试高频问题:self到底是什么
简单的说self是类(Class)实例化的对象。
面试中还有一个问题经常被提及,那就是——什么是cls呢?
cls 是类(或子类)本身,取决于调用的是哪个类。
看下面的实例
输出:
我们也可以通过实例的方法调用class method,例如:
同样输出
输出:
使用cls 作为方法参数时,通常该方法需要由@classmethod 修饰,@classmethod修饰的方法表示的是类方法。这里需要注意cls就是一个标识,你可以把他写成abc,bcd都是可以的,只是出于习惯写成了cls。
既然cls是一个类,那么我们就可以使用他来进行实例化,具体代码如下:
输出:
可以看到通过obj1=cls()和obj2=cls(),成功创建了两个实例,分别是0x000000690A1E0C08和0x000000690A1E0C48,而这两个实例的类型都是MyClass3'
另外cls 还可以在python类中的方法 __new__里实现,通常定义为:
最后我们可以简单地总结一下self 和 cls:简单的说self是类(Class)实例化的对象。
cls 是类(或子类)本身。我们也可以方便地理解self表示实例的,cls则表示类的!
㈡ python面试题总结1-内存管理机制
(1).引用计数
(2). 垃圾回收
(3). 内存池机制
在python中每创建一个对象,对应的会有一个引用计数,当发生赋值操作如a=b,对应的b的引用计数会自动加1,当引用的对象被清除或者函数结束时,引用计数会自动减1。
在python中使用引用计数,标记清楚,分代回收三种方式进行垃圾回收。
其中,引用计数当对象的引用计数归0时,对象会自动被清除。标记清除机制是首先遍历所有对象,如果对象可达,就说明有变量引用它,则标记其为可达的。如果不可达,则对其进行清除。分代回收是当对象创建时被标记为第0代,经过一次垃圾回收之后,余下的对象被标记为第1代,最高为第2代。其原理是,对象的生存期越长,月可能不是垃越。
ython语言虽然提供了对内存的垃圾收集机制,但实际上它将不用的内存放到内存池而不是返回给操作系统,所以就有了以下:
1 Pymalloc机制;这个主要是为了加速Python的执行效率,Python引入了一个内存池机制,用于管理,为了对小块内存的申请和释放。
2 Python中所有小于256个字节的对象都是依靠pymalloc分配器来实现的,而稍大的对象用的则是系统的malloc。
3 对于Python对象,比如整数、浮点数和List这些,都有自己独立的内存池,对象间并不共享他们的内存池。换句话说就是,假设你分配并且释放了大量的整数,那么用于缓存这些整数的内存就不能再分配给浮点数。
㈢ 面试Python后端工程师,主要注意准备什么
自我介绍
之前讲过很多关于如何应对面试官提出的“自我介绍”这个问题,今天,针对Python程序员这个岗位,给大家重新梳理一下答题的结构。我们在做自我介绍时,可以按照:个人基本信息+基本技术构成+项目经验(具体项目以及在项目中的负责部分)+自我评价的结构来回答。注意一定要紧紧围绕招聘岗位的需求做介绍,在此之前要做好准备工作,看看招聘方具体需要什么方向的研发工程师。目前针对Python,有自动化测试平台的设计与开发、数据的挖掘与清洗以及Python开发等具体岗位,所以面试Python方向的同学注意,可以多和运维以及自动化方面靠拢。当然,具体还是要看公司空缺岗位与你的专业是否对口。
不要给自己挖坑
确保你在回答面试官的过程中,回答的每个知识点都了然于胸,不然被问住,是很难堪的。如果遇到不会的问题,一定不要盲目乱答一通。比如有一次,有位同学在回答Web安全问题时,顺嘴说了SQL注入,面试官便顺水推舟,让这位同学接着讲讲SQL的原理及解决方法。然而这位同学却把XSS跨站注入攻击和SQL注入搞混了,归根结底,还是知识掌握得不够牢固。所以,在面试时,要斟酌每一句话,聪明的同学还可以引导面试官,让他问出自己想要被问的问题。当然,化被动为主动,就是面试中比较高的一种境界了。
有足够的自信
如果你学历不是特别高,在面试时,面试官很有可能会问你是怎样看待学历和能力的。学历和能力在当今的社会都不可或缺,学历往往是你面试的敲门砖,但敲完门用途就不大了,后面才是证明你能力的时刻。针对这个问题,我们一定要不卑不亢地说出自己看法:“我想只要完成了大学校园内的学业,就表明已经具备了一定的学习能力。如果我们努力学习代码技能,并且有能力学好,那么是学士还是博士就不是很重要。竞争这个岗位的关键是看你能在这个领域上发挥什么作用,而不单单是学了多少书本上的知识。”
除了上述主观性问题之外,很多专业性的问题也要了然于心。
㈣ Python学到什么程度可以面试工作
Python作为一门最基础的编程语言,也是很多计算机专业的学生需要掌握的一门课程。我在大一的时候就已经学习了Python的相关基础知识,可以说是很多其他编程语言例如Java,C++的基础了。
那Python学习到什么程度就可以去找工作了呢?下面是某招聘网站中Python开发工程师的岗位要求。
质而言之,以上的参考都是基于图中岗位而言的。但是万变不离其宗,我们学习的过程中就一定要把Python的基础打好,特别是对于编程小白,一定要多积累自己的经验,多独立开发一些项目,这样才能在之后的公司面试中更加出众。
㈤ python运维开发工程师面试常见问题有哪些
面试python运维开发工程师每家公司对专业知识的考察侧重点是不一样的,下面给你整理了一些,希望能帮助到你!
python
1、python是强类型还是弱类型的语言
2、python的动态性体现在哪
3、python的namespace:四种;len()等函数的命名空间
4、range和xrange的区别,谈到了迭代器
5、于是问怎么实现迭代器,然后又问了生成器,yield语句
6、将list的中的一万条字符串合成一条字符串的方法
7、python多线程(g il)
8、python的三目运算符有吗? 怎么用一行代码实现三目运算
linux
1、问linux命令
2、top和ps在进程占有资源率的统计方式有什么不同
3、然后扯到了页表,内存管理,TLB
5、linux文件系统:inode,inode存储了哪些东西,目录名,文件名存在哪里
㈥ Python后端开发工程师面试
第一步:自我介绍
第二步:公司介绍
第三步:技术基础
第四步:项目介绍
第五步:待遇
自我介绍,简单直接,姓名,籍贯,大学,工作经历
示例如下:
你好,面试官,我叫XX,来自XX,本科毕业于XX,主修XX专业,有X年工作经验,在上一家公司担任python后端开发工程师的职位。
公司名称是XX、公司主要做外包软件、都有软件定制/商城定制、前端2个后端2个运维1个
主要是根据你简历中填写的技术,根据我的简历中所写的,总结几点如下:
字典的查询流程:
不可变对象可哈希, str , fronzenset , tuple ,自己实现的类,要重载 __hash__ 方法。
dict内存花销大,但是查询速度快,自定义的对象或者python内部的对象都是dict包装的。
dict的存储顺序和元素添加顺序有关,添加顺序可能改变已有数据的顺序。
集合:是一个可以存放任意数据类型的可变无序的映射集合。
set和dict类似,set的核心也是散列表,但是表元只包含值的引用。 由于散列表的特性,set的元素不能重复,且无序。 内部由哈希实现,查找的时间复杂度为O(1),所以性能很高,实现了魔法函数 __contains__ 可以使用in来查找。 set的去重是通过两个函数 __hash__ 和 __eq__ 实现的。
(1)浅拷贝
定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值。
浅拷贝的特点:
(2)深拷贝:
定义:一个变量对另外一个变量的值拷贝。
深拷贝的特点:
Python GC主要使用引用计数(reference counting)来跟踪和回收垃圾。在引用计数的基础上,通过“标记-清除”(mark and sweep)解决容器对象可能产生的循环引用问题,通过“分代回收”(generation collectio n)以空间换时间的方法提高垃圾回收效率。
GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁。它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,GIL本质上就是一把互斥锁,将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,从而保证数据的安全性。
GIL保护的是解释器级别的数据,但是用户自己的数据需要自己加锁处理。
既然有了GIL的存在,一个进程中同一时刻只有一个线程能够被执行,无法利用cpu的多核机制,导致多线程用于I/O密集型,多进程用于计算密集型,如金融分析等。
死锁:两个或两个以上的进程或者线程在执行过程中,因为争夺资源而造成的互相等待现象,若无外力的作用,都将一直处于阻塞状态,这些互相等待的进程或者线程就被称为死锁。
解决方法,使用递归锁(RLock)
这个RLock内部有一个Lock和一个counter变量,counter记录着acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁
可以直接认为是linux,毕竟搞后端的多数是和linux打交道。
那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
UDP不存在粘包问题,是由于UDP发送的时候,没有经过Negal算法优化,不会将多个小包合并一次发送出去。另外,在UDP协议的接收端,采用了链式结构来记录每一个到达的UDP包,这样接收端应用程序一次recv只能从socket接收缓冲区中读出一个数据包。也就是说,发送端send了几次,接收端必须recv几次(无论recv时指定了多大的缓冲区)。
存储可能包含rdbms,nosql以及缓存等,我以mysql,redis举例**
㈦ Python编程面试常见问题有哪些
Python编程面试题目一:python下多线程的限制以及多进程中传递参数的方式,以及区别
(1)python下多线程的限制以及多进程中传递参数的方式
python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。
多进程间共享数据,可以使用 multiprocessing.Value 和 multiprocessing.Array
(2)python多线程与多进程的区别
在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
Python编程面试题目二:lambada函数
lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的函数。 lambda 函数不能包含命令,它们所包含的表达式不能超过一个。不要试图向lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。
更多关于Python编程的技巧,干货,资讯等内容,小编会持续更新。
㈧ 面试官常问十大经典算法排序(用Python实现)
算法是一种与语言无关的东西,更确切地说就算解决问题的思路,就是一个通用的思想的问题。代码本身不重要,算法思想才是重中之重
我们在面试的时候总会被问到一下算法,虽然算法是一些基础知识,但是难起来也会让人非常头疼。
排序算法应该算是一些简单且基础的算法,但是我们可以从简单的算法排序锻炼我们的算法思维。这里我就介绍经典十大算法用python是怎么实现的。
十大经典算法可以分为两大类:
比较排序: 通过对数组中的元素进行比较来实现排序。
非比较排序: 不通过比较来决定元素间的相对次序。
算法复杂度
冒泡排序比较简单,几乎所有语言算法都会涉及的冒泡算法。
基本原理是两两比较待排序数据的大小 ,当两个数据的次序不满足顺序条件时即进行交换,反之,则保持不变。
每次选择一个最小(大)的,直到所有元素都被输出。
将第一个元素逐个插入到前面的有序数中,直到插完所有元素为止。
从大范围到小范围进行比较-交换,是插入排序的一种,它是针对直接插入排序算法的改进。先对数据进行预处理,使其基本有序,然后再用直接插入的排序算法排序。
该算法是采用 分治法 对集合进行排序。
把长度为n的输入序列分成两个长度为n/2的子序列,对这两个子序列分别采用归并排序,最终合并成序列。
选取一个基准值,小数在左大数在在右。
利用堆这种数据结构所设计的一种排序算法。
堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。利用最大堆和最小堆的特性。
采用字典计数-还原的方法,找出待排序的数组中最大和最小的元素,统计数组中每个值为i的元素出现的次数,对所有的计数累加,将每个元素放在新数组依次排序。
设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应的桶里去;对每个不是空的桶进行排序;从不是空的桶里把排好序的数据拼接起来。
元素分布在桶中:
然后,元素在每个桶中排序:
取得数组中的最大数,并取得位数;从最低位开始取每个位组成新的数组;然后进行计数排序。
上面就是我整理的十大排序算法,希望能帮助大家在算法方面知识的提升。看懂之后可以去试着自己到电脑上运行一遍。最后说一下每个排序是没有调用数据的,大家记得实操的时候要调用。
参考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html
㈨ Python面试数据分析,爬虫和深度学习一般都问什么问题,笔试题目有哪些
简单罗列些:
1.数据清洗与处理:数据读取read_csv等,数据表构建dataframe等,数据整合concat/join/merge等,表结构处理以及切片iloc/loc等,数据统计describe/isnull/sum/apply等,图表展示plot,数据透视表pivot_table等,异常值与缺失数据统计与处理,相关性检验
2.机器学习模型构建:svm,logistic,knn等
3.爬虫:request包
4.深度学习:CNN,RNN,图像处理,音频处理,语义理解。