㈠ 怎样用 python 写一个股票自动交易的程序
国外有自动交易软件。只需要写插件就可以。如果用python重新写,有些麻烦。如果证券交易公司提供API,就容易。 我记得2004年左右是通过API实现的。 有个朋友做过一个贵金属的自动交易。不过2年后,亏了不少。
㈡ 怎样用 Python 写一个股票自动交易的程序
股票自动交易助手提供了一个 Python 自动下单接口,参考代码
#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录
fromStockOrderApiimport*
#买入测试
#Buy(u"600000",100,0,1,0)
#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)
#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")
arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))
print("--------------------------------")
print("")
print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))
print("--------------------------------")
㈢ 怎样用python处理股票
用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。
㈣ python炒股可行吗
你好,只要这个软件编程学的好,还是可以的,这是用来量化做交易的,很好
希望你能把这个软件学好,然后用在股票或期货的交易当中盈利
㈤ 怎样用 Python 写一个股票自动交易的程序
1,http://www.python.org/download/ 下载windows安装包,
2,python环境变量配置
(1)设置环境变量:我的电脑-右键-属性-高级-环境变量 在Path中加入
;c:\python26 (注意前面的分号和路径)
(2)此时,还是只能通过"python *.py"运行python脚本,若希望直接运行*.py,只需再修改另一个环境变量PATHEXT:
;.PY;.PYM
3,测试是否安装成功
cmd进入命令行 输入python –v 若是输出版本信息,则表示安装完毕
4,建一个hello.py
print ("hello world")
5,cmd 进入命令行 找到文件路径 hello.py
会输出"hello world"
6,接受用户输入
x= input("x:")
y= input("y:")
print (x * y)
print("我开始学习python了,要加油啊!")
㈥ 怎样用 Python 写一个股票自动交易的程序
方法一
前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。
方法二
是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。
方法三
鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。
方法四
就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
㈦ 如何用Python炒股
如果想直接执行python程序的话可以写一个.bat新建一个记事本,然后写一段下面的代码,最后存成.bat文件,以后直接执行这段代码就可以了。其实也可以直接执行.py文件c:\program files\python file.py
㈧ 如何用Python和机器学习炒股赚钱
相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。
我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。
这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:
“星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。”
在研究者给出的许多有见地的观察中,其中有一个总结很突出:
“(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。”
我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的“已知和隐藏关系”的强度。
我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。
如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。
我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。
㈨ 怎么学习python量化交易
下面教你八步写个量化交易策略——单股票均线策略
1 确定策略内容与框架
若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票
只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?
想想人是怎么操作的,应该包括这样两个部分
既然是单股票策略,事先决定好交易哪一个股票。
每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。
对应代码也是这两个部分
definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方
2 初始化
我们要写设置要交易的股票的代码,比如 兔宝宝(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码
3 获取收盘价与均价
首先,获取昨日股票的收盘价
#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price
然后,获取近二十日股票收盘价的平均价
#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')
4 判断是否买卖
数据都获取完,该做买卖判断了
#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出
问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。
#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash
5 买入卖出
#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出
6 策略代码写完,进行回测
把买入卖出的代码写好,策略就写完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出
现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。
7 建立模拟交易,使策略和行情实时连接自动运行
策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。
8 开启微信通知,接收交易信号
点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。
㈩ 如何用Python炒股
python可以用于爬虫,爬取指定股票的数据,更准确,更便捷,利于数据分析和买卖的把控