导航:首页 > 编程语言 > python怎么设置异步模块

python怎么设置异步模块

发布时间:2023-03-02 23:01:57

⑴ “2022 年”崔庆才 python3 爬虫教程 - 代理的使用方法

前面我们介绍了多种请求库,如 urllib、requests、Selenium、Playwright 等用法,但是没有统一梳理代理的设置方法,本节我们来针对这些库来梳理下代理的设置方法。

在本节开始之前,请先根据上一节了解一下代理的基本原理,了解了基本原理之后我们可以更好地理解和学习本节的内容。

另外我们需要先获取一个可用代理,代理就是 IP 地址和端口的组合,就是 : 这样的格式。如果代理需要访问认证,那就还需要额外的用户名密码两个信息。

那怎么获取一个可用代理呢?

使用搜索引擎搜索 “代理” 关键字,可以看到许多代理服务网站,网站上会有很多免费或付费代理,比如快代理的免费 HTTP 代理:https://www.kuaidaili.com/free/ 上面就写了很多免费代理,但是这些免费代理大多数情况下并不一定稳定,所以比较靠谱的方法是购买付费代理。付费代理的各大代理商家都有套餐,数量不用多,稳定可用即可,我们可以自行选购。

另外除了购买付费 HTTP 代理,我们也可以在本机配置一些代理软件,具体的配置方法可以参考 https://setup.scrape.center/proxy-client,软件运行之后会在本机创建 HTTP 或 SOCKS 代理服务,所以代理地址一般都是 127.0.0.1: 这样的格式,不同的软件用的端口可能不同。

这里我的本机安装了一部代理软件,它会在本地 7890 端口上创建 HTTP 代理服务,即代理为 127.0.0.1:7890。另外,该软件还会在 7891 端口上创建 SOCKS 代理服务,即代理为 127.0.0.1:7891,所以只要设置了这个代理,就可以成功将本机 IP 切换到代理软件连接的服务器的 IP 了。

在本章下面的示例里,我使用上述代理来演示其设置方法,你也可以自行替换成自己的可用代理。

设置代理后,测试的网址是 http://httpbin.org/get,访问该链接我们可以得到请求的相关信息,其中返回结果的 origin 字段就是客户端的 IP,我们可以根据它来判断代理是否设置成功,即是否成功伪装了 IP。

好,接下来我们就来看下各个请求库的代理设置方法吧。

首先我们以最基础的 urllib 为例,来看一下代理的设置方法,代码如下:

运行结果如下:

这里我们需要借助 ProxyHandler 设置代理,参数是字典类型,键名为协议类型,键值是代理。注意,此处代理前面需要加上协议,即 http:// 或者 https://,当请求的链接是 HTTP 协议的时候,会使用 http 键名对应的代理,当请求的链接是 HTTPS 协议的时候,会使用 https 键名对应的代理。不过这里我们把代理本身设置为了 HTTP 协议,即前缀统一设置为了 http://,所以不论访问 HTTP 还是 HTTPS 协议的链接,都会使用我们配置的 HTTP 协议的代理进行请求。

创建完 ProxyHandler 对象之后,我们需要利用 build_opener 方法传入该对象来创建一个 Opener,这样就相当于此 Opener 已经设置好代理了。接下来直接调用 Opener 对象的 open 方法,即可访问我们所想要的链接。

运行输出结果是一个 JSON,它有一个字段 origin,标明了客户端的 IP。验证一下,此处的 IP 确实为代理的 IP,并不是真实的 IP。这样我们就成功设置好代理,并可以隐藏真实 IP 了。

如果遇到需要认证的代理,我们可以用如下的方法设置:

这里改变的只是 proxy 变量,只需要在代理前面加入代理认证的用户名密码即可,其中 username 就是用户名,password 为密码,例如 username 为 foo,密码为 bar,那么代理就是 foo:[email protected]:7890。

如果代理是 SOCKS5 类型,那么可以用如下方式设置代理:

此处需要一个 socks 模块,可以通过如下命令安装:

这里需要本地运行一个 SOCKS5 代理,运行在 7891 端口,运行成功之后和上文 HTTP 代理输出结果是一样的:

结果的 origin 字段同样为代理的 IP,代理设置成功。

对于 requests 来说,代理设置非常简单,我们只需要传入 proxies 参数即可。

这里以我本机的代理为例,来看下 requests 的 HTTP 代理设置,代码如下:

运行结果如下:

和 urllib 一样,当请求的链接是 HTTP 协议的时候,会使用 http 键名对应的代理,当请求的链接是 HTTPS 协议的时候,会使用 https 键名对应的代理,不过这里统一使用了 HTTP 协议的代理。

运行结果中的 origin 若是代理服务器的 IP,则证明代理已经设置成功。

如果代理需要认证,那么在代理的前面加上用户名和密码即可,代理的写法就变成如下所示:

这里只需要将 username 和 password 替换即可。

如果需要使用 SOCKS 代理,则可以使用如下方式来设置:

这里我们需要额外安装一个包 requests[socks],相关命令如下所示:

运行结果是完全相同的:

另外,还有一种设置方式,即使用 socks 模块,也需要像上文一样安装 socks 库。这种设置方法如下所示:

使用这种方法也可以设置 SOCKS 代理,运行结果完全相同。相比第一种方法,此方法是全局设置的。我们可以在不同情况下选用不同的方法。

httpx 的用法本身就与 requests 的使用非常相似,所以其也是通过 proxies 参数来设置代理的,不过与 requests 不同的是,proxies 参数的键名不能再是 http 或 https,而需要更改为 http:// 或 https://,其他的设置是一样的。

对于 HTTP 代理来说,设置方法如下:

对于需要认证的代理,也是改下 proxy 的值即可:

这里只需要将 username 和 password 替换即可。

运行结果和使用 requests 是类似的,结果如下:

对于 SOCKS 代理,我们需要安装 httpx-socks 库,安装方法如下:

这样会同时安装同步和异步两种模式的支持。

对于同步模式,设置方法如下:

对于异步模式,设置方法如下:

和同步模式不同的是,transport 对象我们用的是 AsyncProxyTransport 而不是 SyncProxyTransport,同时需要将 Client 对象更改为 AsyncClient 对象,其他的不变,运行结果是一样的。

Selenium 同样可以设置代理,这里以 Chrome 为例来介绍其设置方法。

对于无认证的代理,设置方法如下:

运行结果如下:

代理设置成功,origin 同样为代理 IP 的地址。

如果代理是认证代理,则设置方法相对比较繁琐,具体如下所示:

这里需要在本地创建一个 manifest.json 配置文件和 background.js 脚本来设置认证代理。运行代码之后,本地会生成一个 proxy_auth_plugin.zip 文件来保存当前配置。

运行结果和上例一致,origin 同样为代理 IP。

SOCKS 代理的设置也比较简单,把对应的协议修改为 socks5 即可,如无密码认证的代理设置方法为:

运行结果是一样的。

对于 aiohttp 来说,我们可以通过 proxy 参数直接设置。HTTP 代理设置如下:

如果代理有用户名和密码,像 requests 一样,把 proxy 修改为如下内容:

这里只需要将 username 和 password 替换即可。

对于 SOCKS 代理,我们需要安装一个支持库 aiohttp-socks,其安装命令如下:

我们可以借助于这个库的 ProxyConnector 来设置 SOCKS 代理,其代码如下:

运行结果是一样的。

另外,这个库还支持设置 SOCKS4、HTTP 代理以及对应的代理认证,可以参考其官方介绍。

对于 Pyppeteer 来说,由于其默认使用的是类似 Chrome 的 Chromium 浏览器,因此其设置方法和 Selenium 的 Chrome 一样,如 HTTP 无认证代理设置方法都是通过 args 来设置的,实现如下:

运行结果如下:

同样可以看到设置成功。

SOCKS 代理也一样,只需要将协议修改为 socks5 即可,代码实现如下:

运行结果也是一样的。

相对 Selenium 和 Pyppeteer 来说,Playwright 的代理设置更加方便,其预留了一个 proxy 参数,可以在启动 Playwright 的时候设置。

对于 HTTP 代理来说,可以这样设置:

在调用 launch 方法的时候,我们可以传一个 proxy 参数,是一个字典。字典有一个必填的字段叫做 server,这里我们可以直接填写 HTTP 代理的地址即可。

运行结果如下:

对于 SOCKS 代理,设置方法也是完全一样的,我们只需要把 server 字段的值换成 SOCKS 代理的地址即可:

运行结果和刚才也是完全一样的。

对于有用户名和密码的代理,Playwright 的设置也非常简单,我们只需要在 proxy 参数额外设置 username 和 password 字段即可,假如用户名和密码分别是 foo 和 bar,则设置方法如下:

这样我们就能非常方便地为 Playwright 实现认证代理的设置。

以上我们就总结了各个请求库的代理使用方式,各种库的设置方法大同小异,学会了这些方法之后,以后如果遇到封 IP 的问题,我们可以轻松通过加代理的方式来解决。

本节代码:https://github.com/Python3WebSpider/ProxyTest

⑵ python异步有哪些方式

yield相当于return,他将相应的值返回给调用next()或者send()的调用者,从而交出了CPU使用权,而当调用者再次调用next()或者send()的时候,又会返回到yield中断的地方,如果send有参数,还会将参数返回给yield赋值的变量,如果没有就和next()一样赋值为None。但是这里会遇到一个问题,就是嵌套使用generator时外层的generator需要写大量代码,看如下示例:
注意以下代码均在Python3.6上运行调试

#!/usr/bin/env python# encoding:utf-8def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before yield")
from_inner = 0
from_outer = 1
g = inner_generator()
g.send(None) while 1: try:
from_inner = g.send(from_outer)
from_outer = yield from_inner except StopIteration: breakdef main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()041

为了简化,在Python3.3中引入了yield from

yield from

使用yield from有两个好处,

1、可以将main中send的参数一直返回给最里层的generator,
2、同时我们也不需要再使用while循环和send (), next()来进行迭代。

我们可以将上边的代码修改如下:

def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before coroutine start") yield from inner_generator()def main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()

执行结果如下:

do something before coroutine start123456789101234567891011

这里inner_generator()中执行的代码片段我们实际就可以认为是协程,所以总的来说逻辑图如下:

我们都知道Python由于GIL(Global Interpreter Lock)原因,其线程效率并不高,并且在*nix系统中,创建线程的开销并不比进程小,因此在并发操作时,多线程的效率还是受到了很大制约的。所以后来人们发现通过yield来中断代码片段的执行,同时交出了cpu的使用权,于是协程的概念产生了。在Python3.4正式引入了协程的概念,代码示例如下:

import asyncio# Borrowed from http://curio.readthedocs.org/en/latest/[email protected] countdown(number, n):
while n > 0:
print('T-minus', n, '({})'.format(number)) yield from asyncio.sleep(1)
n -= 1loop = asyncio.get_event_loop()
tasks = [
asyncio.ensure_future(countdown("A", 2)),
asyncio.ensure_future(countdown("B", 3))]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()12345678910111213141516

示例显示了在Python3.4引入两个重要概念协程和事件循环,
通过修饰符@asyncio.coroutine定义了一个协程,而通过event loop来执行tasks中所有的协程任务。之后在Python3.5引入了新的async & await语法,从而有了原生协程的概念。

async & await

在Python3.5中,引入了aync&await 语法结构,通过”aync def”可以定义一个协程代码片段,作用类似于Python3.4中的@asyncio.coroutine修饰符,而await则相当于”yield from”。

先来看一段代码,这个是我刚开始使用async&await语法时,写的一段小程序。

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def wait_download(url):
response = await requets.get(url)
print("get {} response complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())

这里会收到这样的报错:

Task exception was never retrieved
future: <Task finished coro=<wait_download() done, defined at asynctest.py:9> exception=TypeError("object Response can't be used in 'await' expression",)>
Traceback (most recent call last):
File "asynctest.py", line 10, in wait_download
data = await requests.get(url)
TypeError: object Response can't be used in 'await' expression123456

这是由于requests.get()函数返回的Response对象不能用于await表达式,可是如果不能用于await,还怎么样来实现异步呢?
原来Python的await表达式是类似于”yield from”的东西,但是await会去做参数检查,它要求await表达式中的对象必须是awaitable的,那啥是awaitable呢? awaitable对象必须满足如下条件中其中之一:

1、A native coroutine object returned from a native coroutine function .

原生协程对象

2、A generator-based coroutine object returned from a function decorated with types.coroutine() .

types.coroutine()修饰的基于生成器的协程对象,注意不是Python3.4中asyncio.coroutine

3、An object with an await method returning an iterator.

实现了await method,并在其中返回了iterator的对象

根据这些条件定义,我们可以修改代码如下:

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def download(url): # 通过async def定义的函数是原生的协程对象
response = requests.get(url)
print(response.text)


async def wait_download(url):
await download(url) # 这里download(url)就是一个原生的协程对象
print("get {} data complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())27282930

好了现在一个真正的实现了异步编程的小程序终于诞生了。
而目前更牛逼的异步是使用uvloop或者pyuv,这两个最新的Python库都是libuv实现的,可以提供更加高效的event loop。

uvloop和pyuv

pyuv实现了Python2.x和3.x,但是该项目在github上已经许久没有更新了,不知道是否还有人在维护。
uvloop只实现了3.x, 但是该项目在github上始终活跃。

它们的使用也非常简单,以uvloop为例,只需要添加以下代码就可以了

import asyncioimport uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())123

⑶ Python(七十二)多任务异步协程

11_lxml/01_线程池的基本使用.py:

11_lxml/02_异步.py:

11_多任务异步协程/03_多任务异步.py:

11_多任务异步协程/04_flask服务.py:

11_多任务异步协程/04_多任务异步协程.py:

11_多任务异步协程/05_aiohttp实现.py:(需与11_多任务异步协程/05_aiohttp实现.py连用)

文章到这里就结束了!希望大家能多多支持Python(系列)!六个月带大家学会Python,私聊我,可以问关于本文章的问题!以后每天都会发布新的文章,喜欢的点点关注!一个陪伴你学习Python的新青年!不管多忙都会更新下去,一起加油!

Editor:Lonelyroots

⑷ Python 异步任务队列Celery 使用

在 Python 中定义 Celery 的时候,我们要引入 Broker,中文翻译过来就是“中间人”的意思。在工头(生产者)提出任务的时候,把所有的任务放到 Broker 里面,在 Broker 的另外一头,一群码农(消费者)等着取出一个个任务准备着手做。这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的。所以我们要引入 Backend 来保存每次任务的结果。这个 Backend 也是存储任务的信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到 Backend,这样我们取回结果,便可以知道有多少任务执行失败了。

其实现架构如下图所示:

可以看到,Celery 主要包含以下几个模块:

celery可以通过pip自动安装。

broker 可选择使用RabbitMQ/redis,backend可选择使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安装请参考对应的官方文档。

------------------------------rabbitmq相关----------------------------------------------------------

官网安装方法: http://www.rabbitmq.com/install-windows.html

启动管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 启动rabbitmq:sbin/rabbitmq-server -detached

rabbitmq已经启动,可以打开页面来看看 地址: http://localhost:15672/#/

用户名密码都是guest 。进入可以看到具体页面。 关于rabbitmq的配置,网上很多 自己去搜以下就ok了。

------------------------------rabbitmq相关--------------------------------------------------------

项目结构如下:

使用前,需要三个方面:celery配置,celery实例,需执行的任务函数,如下:

Celery 的配置比较多,可以在 官方配置文档: http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。

当然,要保证上述异步任务and下述定时任务都能正常执行,就需要先启动celery worker,启动命令行如下:

启动beat ,执行定时任务时, Celery会通过celery beat进程来完成。Celery beat会保持运行, 一旦到了某一定时任务需要执行时, Celery beat便将其加入到queue中. 不像worker进程, Celery beat只需要一个即可。而且为了避免有重复的任务被发送出去,所以Celery beat仅能有一个。

命令行启动:

如果你想将celery worker/beat要放到后台运行,推荐可以扔给supervisor。

supervisor.conf如下:

⑸ python 异步是什么意思

异步是计算机多线程的异步处理。与同步处理相对,异步处理不用阻塞当前线程来等待处理完成,而是允许后续操作,直至其它线程将处理完成,并回调通知此线程。

⑹ python 异步请求的时候怎么添加代理

有几种方法。一种是设置环境变量http_proxy,它会自动访问这个。 另外一种是你使用urllib2的时候,在参数里加上代理。还有一个是urllib上指定。

比如
import urllib
urllib.urlopen(某网站,proxyes={'http:':"某代理IP地址:代理的端口"})

使用QT时,它的浏览器设置代理要在浏览器初始化参数里指定。

⑺ python2.7怎么实现异步

改进之前
之前,我的查询步骤很简单,就是:
前端提交查询请求 --> 建立数据库连接 --> 新建游标 --> 执行命令 --> 接受结果 --> 关闭游标、连接
这几大步骤的顺序执行。
这里面当然问题很大:
建立数据库连接实际上就是新建一个套接字。这是进程间通信的几种方法里,开销最大的了。
在“执行命令”和“接受结果”两个步骤中,线程在阻塞在数据库内部的运行过程中,数据库连接和游标都处于闲置状态。
这样一来,每一次查询都要顺序的新建数据库连接,都要阻塞在数据库返回结果的过程中。当前端提交大量查询请求时,查询效率肯定是很低的。
第一次改进
之前的模块里,问题最大的就是第一步——建立数据库连接套接字了。如果能够一次性建立连接,之后查询能够反复服用这个连接就好了。
所以,首先应该把数据库查询模块作为一个单独的守护进程去执行,而前端app作为主进程响应用户的点击操作。那么两条进程怎么传递消息呢?翻了几天Python文档,终于构思出来:用队列queue作为生产者(web前端)向消费者(数据库后端)传递任务的渠道。生产者,会与SQL命令一起,同时传递一个管道pipe的连接对象,作为任务完成后,回传结果的渠道。确保,任务的接收方与发送方保持一致。
作为第二个问题的解决方法,可以使用线程池来并发获取任务队列中的task,然后执行命令并回传结果。
第二次改进
第一次改进的效果还是很明显的,不用任何测试手段。直接点击页面链接,可以很直观地感觉到反应速度有很明显的加快。
但是对于第二个问题,使用线程池还是有些欠妥当。因为,CPython解释器存在GIL问题,所有线程实际上都在一个解释器进程里调度。线程稍微开多一点,解释器进程就会频繁的切换线程,而线程切换的开销也不小。线程多一点,甚至会出现“抖动”问题(也就是刚刚唤醒一个线程,就进入挂起状态,刚刚换到栈帧或内存的上下文,又被换回内存或者磁盘),效率大大降低。也就是说,线程池的并发量很有限。
试过了多进程、多线程,只能在单个线程里做文章了。
Python中的asyncio库
Python里有大量的协程库可以实现单线程内的并发操作,比如Twisted、Gevent等等。Python官方在3.5版本里提供了asyncio库同样可以实现协程并发。asyncio库大大降低了Python中协程的实现难度,就像定义普通函数那样就可以了,只是要在def前面多加一个async关键词。async def函数中,需要阻塞在其他async def函数的位置前面可以加上await关键词。
import asyncio
async def wait():
await asyncio.sleep(2)
async def execute(task):
process_task(task)
await wait()
continue_job()
async def函数的执行稍微麻烦点。需要首先获取一个loop对象,然后由这个对象代为执行async def函数。
loop = asyncio.get_event_loop()
loop.run_until_complete(execute(task))
loop.close()
loop在执行execute(task)函数时,如果遇到await关键字,就会暂时挂起当前协程,转而去执行其他阻塞在await关键词的协程,从而实现协程并发。
不过需要注意的是,run_until_complete()函数本身是一个阻塞函数。也就是说,当前线程会等候一个run_until_complete()函数执行完毕之后,才会继续执行下一部函数。所以下面这段代码并不能并发执行。
for task in task_list:
loop.run_until_complete(task)
对与这个问题,asyncio库也有相应的解决方案:gather函数。
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(execute(task))
for task in task_list]
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
当然了,async def函数的执行并不只有这两种解决方案,还有call_soon与run_forever的配合执行等等,更多内容还请参考官方文档。
Python下的I/O多路复用
协程,实际上,也存在上下文切换,只不过开销很轻微。而I/O多路复用则完全不存在这个问题。
目前,Linux上比较火的I/O多路复用API要算epoll了。Tornado,就是通过调用C语言封装的epoll库,成功解决了C10K问题(当然还有Pypy的功劳)。
在Linux里查文档,可以看到epoll只有三类函数,调用起来比较方便易懂。
创建epoll对象,并返回其对应的文件描述符(file descriptor)。
int epoll_create(int size);
int epoll_create1(int flags);
控制监听事件。第一个参数epfd就对应于前面命令创建的epoll对象的文件描述符;第二个参数表示该命令要执行的动作:监听事件的新增、修改或者删除;第三个参数,是要监听的文件对应的描述符;第四个,代表要监听的事件。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
等候。这是一个阻塞函数,调用者会等候内核通知所注册的事件被触发。
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
在Python的select库里:
select.epoll()对应于第一类创建函数;
epoll.register(),epoll.unregister(),epoll.modify()均是对控制函数epoll_ctl的封装;
epoll.poll()则是对等候函数epoll_wait的封装。
Python里epoll相关API的最大问题应该是在epoll.poll()。相比于其所封装的epoll_wait,用户无法手动指定要等候的事件,也就是后者的第二个参数struct epoll_event *events。没法实现精确控制。因此只能使用替代方案:select.select()函数。
根据Python官方文档,select.select(rlist, wlist, xlist[, timeout])是对Unix系统中select函数的直接调用,与C语言API的传参很接近。前三个参数都是列表,其中的元素都是要注册到内核的文件描述符。如果想用自定义类,就要确保实现了fileno()方法。
其分别对应于:
rlist: 等候直到可读
wlist: 等候直到可写
xlist: 等候直到异常。这个异常的定义,要查看系统文档。
select.select(),类似于epoll.poll(),先注册文件和事件,然后保持等候内核通知,是阻塞函数。
实际应用
Psycopg2库支持对异步和协程,但和一般情况下的用法略有区别。普通数据库连接支持不同线程中的不同游标并发查询;而异步连接则不支持不同游标的同时查询。所以异步连接的不同游标之间必须使用I/O复用方法来协调调度。
所以,我的大致实现思路是这样的:首先并发执行大量协程,从任务队列中提取任务,再向连接池请求连接,创建游标,然后执行命令,并返回结果。在获取游标和接受查询结果之前,均要阻塞等候内核通知连接可用。
其中,连接池返回连接时,会根据引用连接的协程数量,返回负载最轻的连接。这也是自己定义AsyncConnectionPool类的目的。
我的代码位于:bottle-blog/dbservice.py
存在问题
当然了,这个流程目前还一些问题。
首先就是每次轮询拿到任务之后,都会走这么一个流程。
获取连接 --> 新建游标 --> 执行任务 --> 关闭游标 --> 取消连接引用
本来,最好的情况应该是:在轮询之前,就建好游标;在轮询时,直接等候内核通知,执行相应任务。这样可以减少轮询时的任务量。但是如果协程提前对应好连接,那就不能保证在获取任务时,保持各连接负载均衡了。
所以这一块,还有工作要做。
还有就是epoll没能用上,有些遗憾。
以后打算写点C语言的内容,或者用Python/C API,或者用Ctypes包装共享库,来实现epoll的调用。
最后,请允许我吐槽一下Python的epoll相关文档:简直太弱了!!!必须看源码才能弄清楚功能。

阅读全文

与python怎么设置异步模块相关的资料

热点内容
购买浪潮服务器如何部署云 浏览:359
把pdf转为word的软件 浏览:799
程序员去面试产品经理 浏览:463
魏晋玄学pdf 浏览:160
单片机步进电机接线图 浏览:148
如何关闭安卓通话设置 浏览:417
方舟生存进化云服务器配置 浏览:216
微信app广告的广告主是什么 浏览:984
java两个队列实现栈 浏览:700
先学c语言还是单片机 浏览:48
服务器的全称和英文是什么 浏览:23
zip包解压库java 浏览:498
白嫖pdf 浏览:482
有什么app可以控制空调的 浏览:863
python标识符可以有减号 浏览:911
股票kd中k值完整算法 浏览:74
mysqlmac命令行启动 浏览:708
app会闪退怎么办啊 浏览:415
济宁程序员培训 浏览:678
世界五千年pdf 浏览:155