导航:首页 > 编程语言 > python多线程交互

python多线程交互

发布时间:2023-03-03 05:37:05

1. python 的多线程问题。。

python 的GIL规定每个时刻只能有一个线程访问python虚拟机,所以你要用python的多线程来做计算是很不合算的,但是对于IO密集型的应用,例如网络交互来说,python的多线程还是非常给力的。
如果你是一个计算密集型的任务,非要用python来并行执行的话,有以下几个方法:
1 使用python的multiprocessing 模块,能够发挥多核的优势。
2 使用ironPython,但是这个只能在windows下用
3 使用pypy,这个可以实现真正的多线程。

2. Python多线程是什么意思

几乎所有的操作系统都支持同时运行多个任务,一个任务通常就是一个程序,所有运行中的任务都对应一个进程。即当一个程序进入内存运行时,即变成一个进程。进程就是处于运行过程中的程序,并且具有一定的独立功能。进程是系统进行资源分配调度的一个独立单位,当一个程序运行时,内部可能包含多个顺序执流,每个顺序执行流就是一个线程。
1、线程在程序中是独立的,并发的执行流,划分尺度小于进程,所有多线程程序的并发性高;
2、进程在执行过程中拥有独立的内存单元,而多个线程共享内存,可以极大地提高进程程序的运行效率;
3、线程比进程具有更高的性能,由于同一个进程中的线程都有共性,多个线程共享同一个进程的虚拟空间,可以很容易实现通信。操作系统在创建进程中,必须为该进程分配独立内存空间,分配大量相关资源,但创建线程则简单得多。

3. Python多线程

那是当然。你这样写就可以了
self.p[:]=array

这样写法的含义就是指针不变。只换内容。这样就可以同步了。

你的写法是,新建一个数组,再把指针缎带self.p,如果其它的线程就会出问题。

另外你的p应该放在__init__之前。引用时使用T.p来引用,这样更合理一些。

4. python之多线程

进程的概念:以一个整体的形式暴露给操作系统管理,里面包含各种资源的调用。 对各种资源管理的集合就可以称为进程。
线程的概念:是操作系统能够进行运算调度的最小单位。本质上就是一串指令的集合。

进程和线程的区别:
1、线程共享内存空间,进程有独立的内存空间。
2、线程启动速度快,进程启动速度慢。注意:二者的运行速度是无法比较的。
3、线程是执行的指令集,进程是资源的集合
4、两个子进程之间数据不共享,完全独立。同一个进程下的线程共享同一份数据。
5、创建新的线程很简单,创建新的进程需要对他的父进程进行一次克隆。
6、一个线程可以操作(控制)同一进程里的其他线程,但是进程只能操作子进程
7、同一个进程的线程可以直接交流,两个进程想要通信,必须通过一个中间代理来实现。
8、对于线程的修改,可能会影响到其他线程的行为。但是对于父进程的修改不会影响到子进程。

第一个程序,使用循环来创建线程,但是这个程序中一共有51个线程,我们创建了50个线程,但是还有一个程序本身的线程,是主线程。这51个线程是并行的。注意:这个程序中是主线程启动了子线程。

相比上个程序,这个程序多了一步计算时间,但是我们观察结果会发现,程序显示的执行时间只有0.007秒,这是因为最后一个print函数它存在于主线程,而整个程序主线程和所有子线程是并行的,那么可想而知,在子线程还没有执行完毕的时候print函数就已经执行了,总的来说,这个时间只是执行了一个线程也就是主线程所用的时间。

接下来这个程序,吸取了上面这个程序的缺点,创建了一个列表,把所有的线程实例都存进去,然后使用一个for循环依次对线程实例调用join方法,这样就可以使得主线程等待所创建的所有子线程执行完毕才能往下走。 注意实验结果:和两个线程的结果都是两秒多一点

注意观察实验结果,并没有执行打印task has done,并且程序执行时间极其短。
这是因为在主线程启动子线程前把子线程设置为守护线程。
只要主线程执行完毕,不管子线程是否执行完毕,就结束。但是会等待非守护线程执行完毕
主线程退出,守护线程全部强制退出。皇帝死了,仆人也跟着殉葬
应用的场景 : socket-server

注意:gil只是为了减低程序开发复杂度。但是在2.几的版本上,需要加用户态的锁(gil的缺陷)而在3点几的版本上,加锁不加锁都一样。

下面这个程序是一个典型的生产者消费者模型。
生产者消费者模型是经典的在开发架构中使用的模型
运维中的集群就是生产者消费者模型,生活中很多都是

那么,多线程的使用场景是什么?
python中的多线程实质上是对上下文的不断切换,可以说是假的多线程。而我们知道,io操作不占用cpu,计算占用cpu,那么python的多线程适合io操作密集的任务,比如socket-server,那么cpu密集型的任务,python怎么处理?python可以折中的利用计算机的多核:启动八个进程,每个进程有一个线程。这样就可以利用多进程解决多核问题。

5. python多线程几种方法实现

Python进阶(二十六)-多线程实现同步的四种方式
临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。
锁机制
threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加锁,锁住相应的资源
self.num += 1
num = self.num
self.lock.release()#解锁,离开该资源
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#将num加1,并输出原来的数据和+1之后的数据
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使线程一个一个执行

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“同步阻塞”(参见多线程的基本概念)。
直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
信号量
信号量也提供acquire方法和release方法,每当调用acquire方法的时候,如果内部计数器大于0,则将其减1,如果内部计数器等于0,则会阻塞该线程,知道有线程调用了release方法将内部计数器更新到大于1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允许最多三个线程同时访问资源

def add(self):
self.sem.acquire()#内部计数器减1
self.num += 1
num = self.num
self.sem.release()#内部计数器加1
return num

n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):

6. python 怎么实现多线程的

线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。

7. python之多线程原理

并发:逻辑上具备同时处理多个任务的能力。
并行:物理上在同一时刻执行多个并发任务。

举例:开个QQ,开了一个进程,开了微信,开了一个进程。在QQ这个进程里面,传输文字开一个线程、传输语音开了一个线程、弹出对话框又开了一个线程。
总结:开一个软件,相当于开了一个进程。在这个软件运行的过程里,多个工作同时运转,完成了QQ的运行,那么这个多个工作分别有多个线程。

线程和进程之间的区别:

进程在python中的使用,对模块threading进行操作,调用的这个三方库。可以通过 help(threading) 了解其中的方法、变量使用情况。也可以使用 dir(threading) 查看目录结构。

current_thread_num = threading.active_count() # 返回正在运行的线程数量
run_thread_len = len(threading.enumerate()) # 返回正在运行的线程数量
run_thread_list = threading.enumerate() # 返回当前运行线程的列表
t1=threading.Thread(target=dance) #创建两个子线程,参数传递为函数名
t1.setDaemon(True) # 设置守护进程,守护进程:主线程结束时自动退出子线程。
t1.start() # 启动子线程
t1.join() # 等待进程结束 exit()`# 主线程退出,t1子线程设置了守护进程,会自动退出。其他子线程会继续执行。

8. python 多进程和多线程配合

由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。

阅读全文

与python多线程交互相关的资料

热点内容
购买浪潮服务器如何部署云 浏览:359
把pdf转为word的软件 浏览:799
程序员去面试产品经理 浏览:463
魏晋玄学pdf 浏览:160
单片机步进电机接线图 浏览:148
如何关闭安卓通话设置 浏览:417
方舟生存进化云服务器配置 浏览:216
微信app广告的广告主是什么 浏览:984
java两个队列实现栈 浏览:700
先学c语言还是单片机 浏览:48
服务器的全称和英文是什么 浏览:23
zip包解压库java 浏览:498
白嫖pdf 浏览:482
有什么app可以控制空调的 浏览:863
python标识符可以有减号 浏览:911
股票kd中k值完整算法 浏览:74
mysqlmac命令行启动 浏览:708
app会闪退怎么办啊 浏览:415
济宁程序员培训 浏览:678
世界五千年pdf 浏览:155