A. tensorflow是什么语言
TensorFlow是编程语言python,C++,CUDA。
TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。
Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究。
TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API)。
自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码。
(1)tensorflowc编程扩展阅读:
TensorFlow的核心组件:
分布式TensorFlow的核心组件(core runtime)包括:分发中心(distributed master)、执行器(dataflow executor/worker service)、内核应用(kernel implementation)和最底端的设备层(device layer)/网络层(networking layer)。
分发中心从输入的数据流图中剪取子图(subgraph),将其划分为操作片段并启动执行器。分发中心处理数据流图时会进行预设定的操作优化,包括公共子表达式消去(common subexpression elimination)、常量折叠(constant folding)等。
执行器负责图操作(graph operation)在进程和设备中的运行、收发其它执行器的结果。分布式TensorFlow拥有参数器(parameter server)以汇总和更新其它执行器返回的模型参数。执行器在调度本地设备时会选择进行并行计算和GPU加速。
TensorFlow的安装:
语言与系统支持
1、Python
TensorFlow提供Python语言下的四个不同版本:CPU版本(tensorflow)、包含GPU加速的版本(tensorflow-gpu),以及它们的每日编译版本(tf-nightly、tf-nightly-gpu)。
TensorFlow的Python版本支持Ubuntu 16.04、Windows 7、macOS 10.12.6 Sierra、Raspbian 9.0及对应的更高版本,其中macOS版不包含GPU加速。安装Python版TensorFlow可以使用模块管理工具pip/pip3或anaconda并在终端直接运行。
2、配置GPU
TensorFlow支持在Linux和Window系统下使用统一计算架构(Compute Unified Device Architecture, CUDA)高于3.5的NVIDIA GPU。
配置GPU时要求系统有NVIDIA GPU驱动384.x及以上版本、CUDA Toolkit和CUPTI(CUDA Profiling Tools Interface)9.0版本、cuDNN SDK7.2以上版本。可选配置包括NCCL 2.2用于多GPU支持、TensorRT 4.0用于TensorFlow模型优化。
B. 在大学想要学习编程,可以通过哪些途径进行学习
一、先知道编程能帮我们干什么
二、再明确自己要拿编程做什么
编程能做什么,要学到什么程度,其实我在上文说的已经比较明白了。
自学编程大概两个阶段:
打基础,至少学懂一门语言,推荐拿C/C++入门(为了学到一些指针与面向对象的知识),拿Python入门也可,但你会发现面向对象在Python教学中可能不被强调,因为Python自带的工具已经很强大;
不推荐拿java入门,因为Java实在是开发者用的语言,其魅力在于接口、程序设计,想拿Java入门,不如拿C/C++入门;
编程之理,一通百通。第二个阶段,就是多多实践、持续学习,在自己的领域探索下去:
如果你要搞数据科学、打数据比赛,就去多用熟悉python中的pandas、sklearn库等等;
如果想做线性求解,先找几个简单的java+线性求解器例子动手复现下来,读懂每行代码的作用,在过程中积累;