导航:首页 > 编程语言 > 提高python运行效率

提高python运行效率

发布时间:2023-03-08 11:35:37

python 优点

Python是目前公认的全球5大流行语言之一,从云计算、大数据到人工智能,Python无处不在,网络、阿里巴巴、腾讯等一系列大公司都在使用Python完成各种任务,Python发展如此迅猛,究竟有什么优势呢?
1. 简单
Python采用极简主义设计思想,语法简单优雅,不需要很复杂的代码和逻辑,即可实现强大的功能,很适合初学者学习!
2. 易学
Python学习简单、上手快,不需要面对复杂的语法环境,即可实现所需功能,学习曲线很低,可以通过命令行交互环境学习Python编程
3. 开源免费
Python所有内容都是开源免费的,可以直接下载安装使用,还可以对其源码进行修改,十分便捷!
4. 自由内存管理
Python内存管理是自动完成的,Python开发人员仅需专注程序本身,无需关注内存管理。
5. 跨平台、可移植性
Python具有良好的跨平台和可移植性能,可以被移植到大多数平台下面,如Windows、MacOS、Linux、Andorid和IOS等。
6. 解释性
Python解释器可以把源代码转换成字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行,无需编译环节,可以减少编译过程的时耗,提高Python运行速度。
7. 面向对象
Python既支持面向过程,又支持面向对象,这样编程更加灵活。
8. 可扩展性
Python除了使用Python语言本身编写外,还可以混合使用C语言、Java语言编写。
9. 丰富的第三方库
Python本身具有丰富强大的库,可以实现很多强大的功能。

❷ Python语言运行效率低意味着什么

这个说的效率低,是相对的。绝大多数的应用,用户是不会感觉的到区别的。
这个运行效率可以忽略的。

❸ Python运行效率低的原因有哪些

Python的设计哲学是 第一能让人看懂,附带能在机器上运行,
c语言的设计哲学是 第一能让机器快速运行 附带能让人看懂

❹ 对于Python 的科学计算有哪些提高运算速度的技

一:学会正确使用numpy scipy。 numpy scipy写好的绝不自己写,比如矩阵运算等操作,pylab的实现还算不错。各种函数都有,尽量使用他们可以避免初学者大部分的速度不足问题。因为这些函数大部分都是预编译好的。
根据我几年前的测试,python的矩阵运算速度并不慢,(因为你运行的是动态链接库里面的函数而不是脚本)比mathematica快,和matlab持平。
大部分新手不擅长看文档啥都自己造轮子是不好的。当然老手把效率写的比开源库高也不算啥新闻,毕竟有对特定程序的优化
二:减少for的使用,多使用向量化函数,np.vectorlize可以把函数变成对数组逐元素的操作,比for效率高几个华莱士。
三:对内存友好,操作大矩阵的时候减少会引起整矩阵对此的操作
四:系统最慢的大部分时候是io,包括上面说的内存操作和频繁的读入读出以及debug输出。避免他们,在需要实时处理的时候引入类似于gpu的pipeline管线机制或者使用灵活的多线程编程可以起到奇效。
五:matplotlib的绘图效率并不高明,在使用交互绘图(plt.ion)的时候减少不必要的刷新率。

❺ Python高阶(一) - 单线程、多线程和多进程的效率对比测试

多线程的目的 - “最大限度地利用CPU资源”。每个程序执行时都会产生一个进程,而每一个进程至少要有一个主线程。对于单CPU来说(没有开启超线程),在同一时间只能执行一个线程,所以如果想实现多任务,那么就只能每个进程或线程获得一个时间片,在某个时间片内,只能一个线程执行,然后按照某种策略换其他线程执行。由于时间片很短,这样给用户的感觉是同时有好多线程在执行。
Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多线程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。

单线程、多线程和多进程的效率对比测试: github地址

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

| CPU密集型操作| IO密集型操作| 网络请求密集型操作
-- | -- | --| --
线性操作| 69.73533328374 |17.76633326213 | 6.78833333651
多线程操作| 75.40299995740 |145.68366670609 | 1.93999997775
多进程操作| 13.97433336576 | 4.67833328247| 2.38333328565

仅个人观点,,欢迎留言~~~

❻ python写算法不好

基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。

可执行伪代码

Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。

Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。

Python比较流行

Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。

在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。

Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。

Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。

Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。

Python语言的特色

诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。

Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。

所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。

——鲍比·奈特

也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。

Python语言的缺点

Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。

如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。

阅读全文

与提高python运行效率相关的资料

热点内容
app服务端java源码 浏览:796
电脑用文件夹玩大型游戏 浏览:252
安卓耳塞失灵怎么办 浏览:763
华三交换机保存命令 浏览:603
命令方块怎么调键盘 浏览:841
不把密码存在服务器上怎么办 浏览:398
怎么让指令方块的命令消失 浏览:543
用单片机做plc 浏览:404
云服务器进入子目录命令 浏览:795
服务器机柜如何配电 浏览:578
怎么删除iphone资源库里的app 浏览:940
pdf鱼 浏览:648
单片机pcf8591什么作用 浏览:805
sql命令学院 浏览:283
加密软件在电脑那个盘 浏览:988
android获取外部存储 浏览:573
怎么查自己家的服务器地址 浏览:858
编程c语言工作好不好 浏览:569
单片机焊接地怎么连接 浏览:694
游戏源码怎么抓 浏览:216