① 怎样学好 GPU 编程目前有哪些流行的 shader 语言
推荐你看《GPU高性能编程CUDA实战》
英文原书名是:CUDA by Example:an Introction to General-Purpose GPU Programming
作者非常有名,是NVIDIA公司CUDA高级工程师Jason Sanders和Edward Kandrot
《GPU高性能编程CUDA实战》首先介绍了cuda架构的应用背景,并给出了如何配置cuda c的开发环境。然后通过矢量求和运算、矢量点积运算、光线跟踪、热传导模拟等示例详细介绍了cuda c的基本语法和使用模式。通过学习本书,读者可以清楚了解cuda c中每个功能的适用场合,并编写出高性能的cuda软件。
适合具备c或者c++知识的应用程序开发人员、数值计算库开发人员等,也可以作为学习并行计算的学生和教师的教辅。
② 如何通过OpenGL编程将GPU用于通用计算任务
随着现代图形处理器(GPU)可编程能力及性能的提高,应用开发商们一直希望图形硬件可以解决以前只有通用CPU才能完成的高密集计算任务。尽管利用通用GPU进行计算很有发展前景,但传统图像应用编程接口仍然将GPU抽象成一个包括纹理、三角形和像素在内的图像绘制器。寻找一种能够使用这些基本元素的映射算法并不是一项简单的操作,即便对最先进的图形开发商而言也是如此。
幸运的是,基于GPU的计算从概念上讲很容易理解,并且现有多种高级语言和软件工具可以简化GPU的编程工作。但是,开发商必须首先了解GPU在图像绘制过程中是如何工作的,然后才能确定可用于计算的各个组件。
在绘制图像时,GPU首先接收宿主系统以三角顶点形式发送的几何数据。这些顶点数据由一个可编程的顶点处理器进行处理,该处理器可以完成几何变换、亮度计算等任何三角形计算。接下来,这些三角形由一个固定功能的光栅器转换成显示在屏幕上的单独“碎片(fragment)”。在屏幕显示之前,每个碎片都通过一个可编程的碎片处理器计算最终颜色值。
③ GPU编程常识求助:cg、opencv、opengl、cuda、glsl等
你好,
首先,cg,opengl,glsl都是跟计算机图形有关的。cg基本是做渲染的,opengl是一个开源图形库,和微软的direct3D是一样的。glsl是shading language ,专门用来写shader的,在GPGPU( general purpose GPU)概念出来之前,好多人用glsl来做并行计算。
其次,CUDA和OpenCL是两个专门做GPU运算的库。CUDA非常好用,它有自己的NVCC编译器,和各个系统都兼容很好,但是仅限于用于NVIDIA自己的显卡。OpenCL虽然任何显卡都可以使用,但是它的GPU的代码要放到单独的一个文本文件中编译,操作上要比CUDA要复杂。
最后,其实CUDA和OpenCL学那个多一样,因为并行运算的思想是一样的。推荐你两本书:
Programming Massively Parallel Processors 2nd(入门)
CUDA Programming A Developer-'s Guide to Parallel Computing with GPUs (高级一点)
谢谢,望采纳
④ GPU和GPU编程是什么,从什么地方入手
我不明白你所谓的GPU编程是什么意思。GPU是图形处理器,就是显卡上面的那个最大的黑色方块。里面集成了一套系统的运算指令(应该是类似汇编一类的低级语言编译的),没听说过中国有人做这个指令集的。最多是调用相关指令集(这个都少见的很)。个人理解,C++很难实现,语言级别太高,C的话理论上可以,但是估计也不会有人用C语言做这个。然后劝你一句,如果你说的GPU和我说的是一个的话,还是学点别的吧。
⑤ 可编程gpu如何编程
GPU没有可编程性。
现在GPU用于通用计算方面,都要用一个平台将代码转换为GPU能识别的矢量流,这也就是Nvidia的CUDA平台最主要的功能。所以,GPU编程简单来说就是用高级语言编写运算语句,再放进CUDA,扔给GPU计算。
⑥ GPU是什么GPU编程是什么
GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。 GPU的作用 GPU是显示卡的“心脏”,也就相当于CPU在电脑中的作用,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。显示芯片通常是显示卡上最大的芯片(也是引脚最多的)。现在市场上的显卡大多采用NVIDIA和ATI两家公司的图形处理芯片。 于是NVIDIA公司在1999年发布GeForce 256图形处理芯片时首先提出GPU的概念。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。GPU所采用的核心技术有硬体T&L、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬体T&L技术可以说是GPU的标志。 简单说GPU就是能够从硬件上支持T&L(Transform and Lighting,多边形转换与光源处理)的显示芯片,因为T&L是3D渲染中的一个重要部分,其作用是计算多边形的3D位置和处理动态光线效果,也可以称为“几何处理”。一个好的T&L单元,可以提供细致的3D物体和高级的光线特效;只大多数PC中,T&L的大部分运算是交由CPU处理的(这就也就是所谓的软件T&L),由于CPU的任务繁多,除了T&L之外,还要做内存管理、输入响应等非3D图形处理工作,因此在实际运算的时候性能会大打折扣,常常出现显卡等待CPU数据的情况,其运算速度远跟不上今天复杂三维游戏的要求。即使CPU的工作频率超过1GHz或更高,对它的帮助也不大,由于这是PC本身设计造成的问题,与CPU的速度无太大关系。 GPU最大的优势在于其提供的并行运算。通俗点,就是增加了处理图形计算的计算单元。
⑦ cuda并行程序设计 gpu编程指南
你好,
首先,cg,opengl,glsl都是跟计算机图形有关的。cg基本是做渲染的,opengl是一个开源图形库,和微软的direct3d是一样的。glsl是shading
language
,专门用来写shader的,在gpgpu(
general
purpose
gpu)概念出来之前,好多人用glsl来做并行计算。
其次,cuda和opencl是两个专门做gpu运算的库。cuda非常好用,它有自己的nvcc编译器,和各个系统都兼容很好,但是仅限于用于nvidia自己的显卡。opencl虽然任何显卡都可以使用,但是它的gpu的代码要放到单独的一个文本文件中编译,操作上要比cuda要复杂。
最后,其实cuda和opencl学那个多一样,因为并行运算的思想是一样的。推荐你两本书:
1.
programming
massively
parallel
processors
2nd(入门)
2.
cuda
programming
a
developer-'s
guide
to
parallel
computing
with
gpus
(高级一点)
谢谢,望采纳