㈠ python实现矩阵转置的方法分析
Python实现矩阵转置的方法分析
本文实例讲述了Python实现矩阵转置的方法。分享给大家供大家参考,具体如下:
前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加。例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等。
其实不动脑筋的话,用个二重循环很容易写出来:
def trans(m):
a = [[] for i in m[0]]
for i in m:
for j in range(len(i)):
a[j].append(i[j])
return a
m = [[1, 2], [3, 4], [5, 6]] # 想象第一个列表是原始的,后面的是往里添加的
print trans(m) # result:[[1, 3, 5], [ 2, 4, 6]]
然而不管怎么看这种代码都很丑。
仔细看了一下m这种结构。等等,这不是字典的iteritems()的结果么?如果dict(m),那么结果——不就是keys()和values()么?
于是利用字典转换一下:
def trans(m):
d = dict(m)
return [d.keys(), d.values()]
可是再仔细想想,这里面有bug。如果添加列表的第一个元素相同,也就是转化之后dict的key相同,那肯定就不行了呀!况且,如果原始列表不是两个,而是多个,肯定不能用字典的呀!于是这种方法作罢,还是好好看看列表的形状。
然后又是一个不小心的发现:
这种转置矩阵的即时感是怎么回事?
没错,这个问题的本质就是求解转置矩阵。于是就简单了,还是用个不动脑筋的办法:
def trans(m):
for i in range(len(m)):
for j in range(i):
m[i][j], m[j][i] = m[j][i], m[i][j]
return m
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print trans(m)
其实还是有点bug的,看起来是好用的,然而这个矩阵要求行列长度相同才行。
最后,群里某大神说:如果只是转置矩阵的话,直接zip就好了。这才想起来zip的本质就是这样的,取出列表中的对应位置的元素,组成新列表,正是这个题目要做的。
所以最终,这个题目(转置矩阵)的python解法就相当奇妙了:
def trans(m):
return zip(*d)
没错,就这么简单。python的魅力。
㈡ python 字符串如何变成矩阵进行矩阵转置
需求:
你需要转置一个二维数组,将行列互换.
讨论:
你需要确保该数组的行列数都是相同的.比如:
arr = [[1, 2, 3], [4, 5, 6], [7,8, 9], [10, 11, 12]]
列表递推式提供了一个简便的矩阵转置的方法:
print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11],[3, 6, 9, 12]]
另一个更快和高级一些的方法,可以使用zip函数:
print map(list,
zip(*arr))
本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦.
有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别.
㈢ python里x=randn mat=x.T.dot 是求什么
x=randn这个写法是不对的。
randn是numpy里的一个生成随机array的函数。
比如说要生成一个三行两列的随机array,可以这样写:
import numpy
x = numpy.random.randn(3,2)
像这样:
dot(2)是点乘常数就不说了,
那个x.T.dot([1,2,3])就是x.T的
1*1+2*2+3*3=14
2*1+3*2+4*3=20
懂了木有 =。=
㈣ 可以用VC++写吗,python 语言我才刚学,看不明白
在python里面求转置矩阵很简单:
# 导入相关的包
import numpy as np
# 初始化矩阵A
A = np.array([[1, 2, 4, 8, 4],
[18, 12, 42, 9, 45],
[17, 21, 36, 40, 5],
[6, 12, 16, 23, 7]])
# 调用numpy内置方法.T,即求转置
A_T = A.T
㈤ 用python来解决问题
matrix = [[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]]
# 矩阵转置
# 矩阵的列数
colomn = len(matrix[0])
# 转置矩阵的行数,设置空矩阵[[], [], [], []]
transformMatrix = [[] for i in range(colomn)]
for ele in matrix:
for i in range(colomn):
# transformMatrix[i]标识新矩阵的第i行
# ele[i]标识原有矩阵的第i列
transformMatrix[i].append(ele[i])
print transformMatrix
㈥ python自带及pandas、numpy数据结构(一)
1.python自带数据结构:序列(如list)、映射(如字典)、集合(set)。
以下只介绍序列中的list:
创建list:
list1 = []
list1 = [1,2,3,4,5,6,7,8,9] #逗号隔开
list2 = [[1,2],[3,4],[5,6],[7,8]] #list2长度(len(list2))为2,list2[0] = [1,2]
liststring = list(“thisisalist”) #只用于创建字符串行表
索引list:
e = list1[0] #下标从零开始,用中括号
分片list:
es = list1[0:3]
es = list1[0:9:2] #步长在第二个冒号后
list拼接(list1.append(obj)、加运算及乘运算):
list长度:
list每个元素乘一个数值:
list2 = numpy.dot(list2,2)
list类似矩阵相乘(每个元素对应相乘取和):
list3 = numpy.dot(list1,list1)
#要求相乘的两个list长度相同
list3 = numpy.dot(list2,list22)
#要求numpy.shape(list2)和numpy.shape(list22)满足“左行等于右列”的矩阵相乘条件,相乘结果numpy.shape(list3)满足“左列右行”
2.numpy数据结构:
Array:
产生array:
data=np.array([[1, 9, 6], [2, 8, 5], [3, 7, 4]])
data=np.array(list1)
data1 = np.zeros(5) #data1.shape = (5,),5列
data1 = np.eye(5)
索引array:
datacut = data[0,2] #取第零行第二列,此处是6
切片array:
datacut = data[0:2,2] # array([6, 5])
array长度:
data.shape
data.size
np.shape(data)
np.size(data)
len(data)
array拼接:
#括号内也有一个括号(中括号或者小括号)!
d = np.concatenate((data,data))
d = np.concatenate((data,data),axis = 1) #对应行拼接
array加法:逐个相加
array乘法:
d = data data #逐个相乘
d = np.dot(data,data) #矩阵相乘
d = data 3 #每个元素乘3
d = np.dot(data,3) #每个元素乘3
array矩阵运算:
取逆 : np.linalg.inv(data)
转置:data.T
所有元素求和 : np.sum(data)
生成随机数:np.random.normal(loc=0, scale=10, size=None)
生成标准正态分布随机数组:np.random.normal(size=(4,4))
生成二维随机数组:
np.random.multivariate_normal([0,0],np.eye(2))
生成范围在0到1之间的随机矩阵(M,N):
np.random.randint(0,2,(M,N))
Matrix:
创建matrix:
mat1 = np.mat([[1, 2, 3], [4, 5, 6]])
mat1 = np.mat(list)
mat1 = np.mat(data)
matrix是二维的,所有+,-,*都是矩阵操作。
matrix索引和分列:
mat1[0:2,1]
matrix转置:
np.transpose(mat1)
mat1.transpose()
matrix拼接:
np.concatenate([mat1,mat1])
np.concatenate([mat1,mat1],axis = 1)
numpy数据结构总结:对于numpy中的数据结构的操作方法基本相同:
创建:np.mat(list),np.array(list)
矩阵乘:np.dot(x,y)
转置:x.T or np.transpose(x)
拼接:np.concatenate([x,y],axis = 1)
索引:mat[0:1,4],ary[0:1,4]
3.pandas数据结构:
Series:
创建series:
s = pd.Series([[1,2,3],[4,5,6]],index = [‘a’,‘b’])
索引series:
s1 = s[‘b’]
拼接series:
pd.concat([s1,s1],axis = 1) #也可使用s.append(s)
DataFrame:
创建DaraFrame:
df = pd.DataFrame([[1,2,3],[1,2,3]],index = ['a','b'],columns = ['x','y','z'])
df取某一列:
dfc1 =df.x
dfc1 = df[‘x’]
dfc2 = df.iloc[:,0] #用.iloc方括号里是数字而不是column名!
dfc2 = df.iloc[:,0:3]
df取某一行:
dfr1 = df.iloc[0]
df1 = df.iloc[0:2]
df1 = df[0:2] #这种方法只能用于取一个区间
df取某个值:
dfc2 = df.iloc[0,0]
dfc2 = df.iloc[0:2,0:3]
㈦ python中随机生成10-99的整数,构成一个5×5的矩阵,显示完整矩阵,并将矩阵转置后显示出来
使用numpy 简单的很
importnumpyasnp
importrandom
before=np.array([[random.randint(10,99)foriinrange(5)]forjinrange(5)])
result=before.T
print(result)