导航:首页 > 编程语言 > python使用什么声明一个类

python使用什么声明一个类

发布时间:2023-03-20 13:29:43

python对象

众所周知,Python是一门面向对象的语言,在Python无论是数值、字符串、函数亦或是类型、类,都是对象。
对象是在 堆 上分配的结构,我们定义的所有变量、函数等,都存储于堆内存,而变量名、函数名则是一个存储于 栈 中、指向堆中具体结构的引用。

要想深入学习Python,首先需要知道Python对象的定义。

我们通常说的Python都是指CPython,底层由C语言实现,源码地址: cpython [GitHub]
Python对象的定义位于 Include/object.h ,是一个名为 PyObject 的结构体:

Python中的所有对象都继承自PyObejct,PyObject包含一个用于垃圾回收的双向链表,一个引用计数变量 ob_refcnt 和 一个类型对象指针 ob_type

从PyObejct的注释中,我们可以看到这样一句:每个指向 可变大小Python对象 的指针也可以转换为 PyVarObject* (可变大小的Python对象会在下文中解释)。 PyVarObejct 就是在PyObject的基础上多了一个 ob_size 字段,用于存储元素个数:

在PyObject结构中,还有一个类型对象指针 ob_type ,用于表示Python对象是什么类型,定义Python对象类型的是一个 PyTypeObject 接口体

实际定义是位于 Include/cpython/object.h 的 _typeobject :

在这个类型对象中,不仅包含了对象的类型,还包含了如分配内存大小、对象标准操作等信息,主要分为:

以Python中的 int类型 为例,int类型对象的定义如下:

从PyObject的定义中我们知道,每个对象的 ob_type 都要指向一个具体的类型对象,比如一个数值型对象 100 ,它的ob_type会指向 int类型对象PyLong_Type 。

PyTypeObject结构体第一行是一个PyObject_VAR_HEAD宏,查看宏定义可知PyTypeObject是一个变长对象

也就是说,归根结底 类型对象也是一个对象 ,也有ob_type属性,那 PyLong_Type 的 ob_type 是什么呢?
回到PyLong_Type的定义,第一行 PyVarObject_HEAD_INIT(&PyType_Type, 0) ,查看对应的宏定义

由以上关系可以知道, PyVarObject_HEAD_INIT(&PyType_Type, 0) = { { _PyObject_EXTRA_INIT 1, &PyType_Type } 0} ,将其代入 PyObject_VAR_HEAD ,得到一个变长对象:

这样看就很明确了,PyLong_Type的类型就是PyType_Typ,同理可知, Python类型对象的类型就是PyType_Type ,而 PyType_Type对象的类型是它本身

从上述内容中,我们知道了对象和对象类型的定义,那么根据定义,对象可以有以下两种分类

Python对象定义有 PyObject 和 PyVarObject ,因此,根据对象大小是否可变的区别,Python对象可以划分为 可变对象(变长对象) 和 不可变对象(定长对象)

原本的对象a大小并没有改变,只是s引用的对象改变了。这里的对象a、对象b就是定长对象

可以看到,变量l仍然指向对象a,只是对象a的内容发生了改变,数据量变大了。这里的对象a就是变长对象

由于存在以上特性,所以使用这两种对象还会带来一种区别:
声明 s2 = s ,修改s的值: s = 'new string' ,s2的值不会一起改变,因为只是s指向了一个新的对象,s2指向的旧对象的值并没有发生改变
声明 l2 = l ,修改l的值: l.append(6) ,此时l2的值会一起改变,因为l和l2指向的是同一个对象,而该对象的内容被l修改了

此外,对于 字符串 对象,Python还有一套内存复用机制,如果两个字符串变量值相同,那它们将共用同一个对象:

对于 数值型 对象,Python会默认创建0~2 8 以内的整数对象,也就是 0 ~ 256 之间的数值对象是共用的:

按照Python数据类型,对象可分为以下几类:

Python创建对象有两种方式,泛型API和和类型相关的API

这类API通常以 PyObject_xxx 的形式命名,可以应用在任意Python对象上,如:

使用 PyObjecg_New 创建一个数值型对象:

这类API通常只能作用于一种类型的对象上,如:

使用 PyLong_FromLong 创建一个数值型对象:

在我们使用Python声明变量的时候,并不需要为变量指派类型,在给变量赋值的时候,可以赋值任意类型数据,如:

从Python对象的定义我们已经可以知晓造成这个特点的原因了,Python创建对象时,会分配内存进行初始化,然后Python内部通过 PyObject* 变量来维护这个对象,所以在Python内部各函数直接传递的都是一种泛型指针 PyObject* ,这个指针所指向的对象类型是不固定的,只能通过所指对象的 ob_type 属性动态进行判断,而Python正是通过 ob_type 实现了多态机制

Python在管理维护对象时,通过引用计数来判断内存中的对象是否需要被销毁,Python中所有事物都是对象,所有对象都有引用计数 ob_refcnt 。
当一个对象的引用计数减少到0之后,Python将会释放该对象所占用的内存和系统资源。
但这并不意味着最终一定会释放内存空间,因为频繁申请释放内存会大大降低Python的执行效率,因此Python中采用了内存对象池的技术,是的对象释放的空间会还给内存池,而不是直接释放,后续需要申请空间时,优先从内存对象池中获取。

⑵ 有关python中类的声明和应用。

class human:
def __init__(self, name, sex, weight):
self.name=name
self.sex=sex
self.weight=weight
def detail(self):
print "%s %s %d" %(self.name, self.sex, self.weight)

tom=human("tom", "male", 85)
用的时候就
tom.sex
tom.name之类就行了
函数就
tom.detail()就行了

⑶ python用什么来定义类对象

Class 关梁团键字是燃州用来描述类对象的。橡段橘

⑷ python的模块和类有什么区别

python模块是:

自我包含并且有组织的代码片段为模块。

表现形式为:写的代码保存为文件。这个文件就是一个模块。sample.py 其中文件名smaple为模块名字。
python中的类

类(Class):用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例 。类变量:
类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。数据成员:类变量或者实
例变量, 用于处理类及其实例对象的相关的数据。方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程
叫方法的覆盖(override),也称为方法的重写。局部变量:定义在方法中的变量,只作用于当前实例的类。实例变量:在类的声明中,
属性是用变量来表示的。这种变量就称为实例变量,是在类声明的内部但是在类的其他成员方法之外声明的。继承:即一个派生类
(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设
计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。实例化:创建一个类的实
例,类的具体对象。方法:类中定义的函数。对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。
推荐学习《python教程》。

⑸ python 定义一个类实现以下方法

伸手党自重

students={}#uid:name

classStudent(object):
def__init__(self):
pass

defregister(self,uid,name):
students[str(uid)]=name;

deffind_student_by_id(self,uid):
name=None
ifstr(uid)instudents:
name=students[str(uid)]
者吵源returnname

defsorting(self):
lis=[]
碰肢foriinrange(len(students)):
ifstr(i)instudents:
首态lis.append(students[str(i)])
returnlis

classCollege_Student(Student):
def__init__(slef):
pass

defsorting(self):
returnStudent.sorting()[::-1]

⑹ 如何在Python中使用static,class,abstract方法

方法在Python中是如何工作的

方法就是一个函数,它作为一个类属性而存在,你可以用如下方式来声明、访问一个函数:

Python

>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>

Python在告诉你,属性_get_size是类Pizza的一个未绑定方法。这是什么意思呢?很快我们就会知道答案:

Python

>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)

我们不能这么调用,因为它还没有绑定到Pizza类的任何实例上,它需要一个实例作为第一个参数传递进去(Python2必须是该类的实例,Python3中可以是任何东西),尝试一下:

Python

>>> Pizza.get_size(Pizza(42))
42

>>> Pizza.get_size(Pizza(42))
42

太棒了,现在用一个实例作为它的的第一个参数来调用,整个世界都清静了,如果我说这种调用方式还不是最方便的,你也会这么认为的;没错,现在每次调用这个方法的时候我们都不得不引用这个类,如果不知道哪个类是我们的对象,长期看来这种方式是行不通的。

那么Python为我们做了什么呢,它绑定了所有来自类_Pizza的方法以及该类的任何一个实例的方法。也就意味着现在属性get_size是Pizza的一个实例对象的绑定方法,这个方法的第一个参数就是该实例本身。

Python

>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42

和我们预期的一样,现在不再需要提供任何参数给_get_size,因为它已经是绑定的,它的self参数会自动地设置给Pizza实例,下面代码是最好的证明:

Python

>>> m = Pizza(42).get_size
>>> m()
42

更有甚者,你都没必要使用持有Pizza对象的引用了,因为该方法已经绑定到了这个对象,所以这个方法对它自己来说是已经足够了。

也许,如果你想知道这个绑定的方法是绑定在哪个对象上,下面这种手段就能得知:

Python

>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> # You could guess, look at this:
...
>>> m == m.__self__.get_size
True

显然,该对象仍然有一个引用存在,只要你愿意你还是可以把它找回来。

在Python3中,依附在类上的函数不再当作是未绑定的方法,而是把它当作一个简单地函数,如果有必要它会绑定到一个对象身上去,原则依然和Python2保持一致,但是模块更简洁:

Python

>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dd0>

静态方法

静态方法是一类特殊的方法,有时你可能需要写一个属于这个类的方法,但是这些代码完全不会使用到实例对象本身,例如:

Python

class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y

def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)

这个例子中,如果把_mix_ingredients作为非静态方法同样可以运行,但是它要提供self参数,而这个参数在方法中根本不会被使用到。这里的@staticmethod装饰器可以给我们带来一些好处:

Python不再需要为Pizza对象实例初始化一个绑定方法,绑定方法同样是对象,但是创建他们需要成本,而静态方法就可以避免这些。

Python

>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True

可读性更好的代码,看到@staticmethod我们就知道这个方法并不需要依赖对象本身的状态。
可以在子类中被覆盖,如果是把mix_ingredients作为模块的顶层函数,那么继承自Pizza的子类就没法改变pizza的mix_ingredients了如果不覆盖cook的话。

类方法

话虽如此,什么是类方法呢?类方法不是绑定到对象上,而是绑定在类上的方法。

Python

>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>>
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42

无论你用哪种方式访问这个方法,它总是绑定到了这个类身上,它的第一个参数是这个类本身(记住:类也是对象)。

什么时候使用这种方法呢?类方法通常在以下两种场景是非常有用的:

工厂方法:它用于创建类的实例,例如一些预处理。如果使用@staticmethod代替,那我们不得不硬编码Pizza类名在函数中,这使得任何继承Pizza的类都不能使用我们这个工厂方法给它自己用。

Python

class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients

@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())

调用静态类:如果你把一个静态方法拆分成多个静态方法,除非你使用类方法,否则你还是得硬编码类名。使用这种方式声明方法,Pizza类名明永远都不会在被直接引用,继承和方法覆盖都可以完美的工作。

Python

class Pizza(object):
def __init__(self, radius, height):
self.radius = radius
self.height = height

@staticmethod
def compute_area(radius):
return math.pi * (radius ** 2)

@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_area(radius)

def get_volume(self):
return self.compute_volume(self.height, self.radius)

抽象方法

抽象方法是定义在基类中的一种方法,它没有提供任何实现,类似于Java中接口(Interface)里面的方法。

在Python中实现抽象方法最简单地方式是:

Python

class Pizza(object):
def get_radius(self):
raise NotImplementedError

任何继承自_Pizza的类必须覆盖实现方法get_radius,否则会抛出异常。

这种抽象方法的实现有它的弊端,如果你写一个类继承Pizza,但是忘记实现get_radius,异常只有在你真正使用的时候才会抛出来。

Python

>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "<stdin>", line 3, in get_radius
NotImplementedError

还有一种方式可以让错误更早的触发,使用Python提供的abc模块,对象被初始化之后就可以抛出异常:

Python

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""

使用abc后,当你尝试初始化BasePizza或者任何子类的时候立马就会得到一个TypeError,而无需等到真正调用get_radius的时候才发现异常。

Python

>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: Can't instantiate abstract class BasePizza with abstract methods get_radius

混合静态方法、类方法、抽象方法

当你开始构建类和继承结构时,混合使用这些装饰器的时候到了,所以这里列出了一些技巧。

记住,声明一个抽象的方法,不会固定方法的原型,这就意味着虽然你必须实现它,但是我可以用任何参数列表来实现:

Python

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""

class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg

这样是允许的,因为Calzone满足BasePizza对象所定义的接口需求。同样我们也可以用一个类方法或静态方法来实现:

Python

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""

class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None

这同样是正确的,因为它遵循抽象类BasePizza设定的契约。事实上get_ingredients方法并不需要知道返回结果是什么,结果是实现细节,不是契约条件。

因此,你不能强制抽象方法的实现是一个常规方法、或者是类方法还是静态方法,也没什么可争论的。从Python3开始(在Python2中不能如你期待的运行,见issue5867),在abstractmethod方法上面使用@staticmethod和@classmethod装饰器成为可能。

Python

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

ingredient = ['cheese']

@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients

别误会了,如果你认为它会强制子类作为一个类方法来实现get_ingredients那你就错了,它仅仅表示你实现的get_ingredients在BasePizza中是一个类方法。

可以在抽象方法中做代码的实现?没错,Python与Java接口中的方法相反,你可以在抽象方法编写实现代码通过super()来调用它。(译注:在Java8中,接口也提供的默认方法,允许在接口中写方法的实现)

Python

import abc

class BasePizza(object):
__metaclass__ = abc.ABCMeta

default_ingredients = ['cheese']

@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients

class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()

这个例子中,你构建的每个pizza都通过继承BasePizza的方式,你不得不覆盖get_ingredients方法,但是能够使用默认机制通过super()来获取ingredient列表。

⑺ python类的定义与使用是什么

类Class:用来描述具体相同的属性和方法的对象的集合。定义了该集合中每个对象所共有的属性和方法。对象是类的示例。

类定义完成时(正常退出),就创建了一个 类对象。基本上它是对类定义创建的命名空间进行了一个包装;我们在下一节进一步学习类对象的知识。原始的局部作用域(类定义引入之前生效的那个)得到恢复,类对象在这里绑定到类定义头部的类名(例子中是 ClassName )。

基本语法

Python的设计目标之一是让代码具备高度的可阅读性。它设计时尽量使用其它语言经常使用的标点符号和英文单字,让代码看起来整洁美观。它不像其他的静态语言如C、Pascal那样需要重复书写声明语句,也不像它们的语法那样经常有特殊情况和意外。

以上内容参考:网络-Python

⑻ python 类的定义

Python编程中类定义,代码如下:

class<类名>:
<语句>

定义类的专有方法:

__init__构造函数,在生成对象时调用
__del__析构函数,释放对象时使用
__repr__打印,转换
__setitem__按照索引赋值
__getitem__按照索引获取值
__len__获得长度
__cmp__比较运算
__call__函数调用
__add__加运算
__sub__减运算
__mul__乘运算
__div__除运算
__mod__求余运算
__pow__称方

代码如下:

#类定义
classpeople:
#定义基本属性
name=''
age=0
#定义私有属性,私有属性在类外部无法直接进行访问
__weight=0
#定义构造方法
def__init__(self,n,a,w):
self.name=n
self.age=a
self.__weight=w
defspeak(self):
print("%sisspeaking:Iam%dyearsold"%(self.name,self.age))

p=people('tom',10,30)
p.speak()

⑼ pythondef里面可以用自己定义的类吗

pythondef里面可以用自枯老己定义的类。pythondef里面用自己定义的类叫做自定义类。Python中定槐败脊义一个类很简单,只需要使用关键词class去声明即可。python之中想要去使用一个类,那就必须铅渗去实例化这个类,使用这个类的对象去使用它。

⑽ python如何使用一个自己定义好的模块中的类

Chain.py是模块(Mole),
在代码里定义的Class Chain是在模块物罩里定义的类

一种方法是from Chain import Chain

还有一种方法是洞凳用 a = Chain.Chain()
相当于从模纳蚂旅块里索引出这个类

两种方法都可以。

阅读全文

与python使用什么声明一个类相关的资料

热点内容
飞行解压素材 浏览:492
51单片机指令用背吗 浏览:936
unityai算法 浏览:834
我的世界ice服务器如何打开pvp 浏览:975
c语言编程如何做标记 浏览:884
python数据分析实战pdf 浏览:985
u盘插入文件夹 浏览:918
华为amd云服务器 浏览:497
汉化编程卡是什么意思 浏览:128
python学习pdf 浏览:315
祝绪丹程序员那么可爱拍吻戏 浏览:200
asp源码会员消费系统 浏览:115
java反射设置 浏览:154
python一行文 浏览:441
排序算法优缺点 浏览:565
恶搞加密文件pdf 浏览:674
gif怎么压缩图片大小 浏览:219
命令选择当前不可用 浏览:158
欧几里得算法如何求逆元 浏览:506
男中学生上课解压神器 浏览:373