导航:首页 > 编程语言 > python系列实验

python系列实验

发布时间:2023-03-22 08:11:19

⑴ 有哪些足不出户,能用十天掌握的新技能

不少人都看过马尔科姆・格拉德威尔的《异类》,书中最着名的是 “ 1 万小时定律” :要达到世界顶级水平,需要 1 万小时的刻意练习,一般最少要花上 10 年时间。

但问题在于,在这个时代,我们每个人都有太多想学、需要学的技能:工作中需要学外语、学软件、学汇报;生活中需要学烹饪、学乐器、学健身,我们不可能每样都付出 1 万小时……

快速掌握一项技能,对现代人的生存和发展极其重要,乔希・考夫曼有一个经典的 Ted 演讲,他总结了一个快速学习的框架, 只需要 20 小时的练习(每天学习 90 分钟),就可以学会大多数技能,换句话就是通过 20 小时就可以入门了。

下面,我们帮你总结了一些非常实用和装逼的小技能,10 天左右就能学会。疫情期间宅在家中,不妨尝试一下~

爬虫其实就是对网络数据的批量采集,它可以做很多事,比如帮你在 12306 抢票、下载小说、图片、收集抖音上好看的小姐姐的视频……在大数据时代,爬虫早已不是程序员的专属技能,越来越多的职业都需要用到爬虫,比如产品经理、运营、市场人员,都经常需要使用到这个技能。

爬虫程序一般使用 python 语言制作,有很多现成的 Python 框架,可以让你很方便地写出爬虫程序。除此之外,你还需要对网页结构有简单的了解。

推荐课程:


1. 高德 API + Python 爬虫解决租房问题

本课程使用 Python 脚本爬取某租房网站的房源信息,利用高德的 js API 在地图上标出房源地点,划出距离工作地点1小时内可到达的范围。在项目实现的过程中熟悉了 requests 、BeautifulSoup、csv 等库的简单使用。



2. 使用 Python 批量爬取网站信息

本实验主要通过 Python 实现一个命令行参数控制的爬虫程序,可以批量爬取网站的 URLs、JS 文件及其中的端点、子域名和 DNS 有关的数据信息等,能够匹配自定义正则表达式的字符串,还支持将最终结果导出为 JSON 格式或 CSV 格式。



3. Python 二手房信息爬取与数据呈现

本课程以链家的二手房网站为目标,使用python爬取链家官网在售的二手房信息,并且使用matplotlib 绘图包对爬取的信息进行分析,绘制简单的图表。



4. Nodejs 完成网站信息爬虫

本课将通过 Node.js 实现一个简单的爬虫,来爬取豆瓣热评电影,主要有以下几个模块:实验简介,创建项目,HTTP 模块,编写爬虫程序,保存数据到本地。主要会用到的模块(包)有:http,fs,path,cheerio。http 模块用于创建 http 请求,fs 模块用于保存文件,path 模块用于解析路径,cheerio 包是服务器端的 jQuery 实现,这里用于解析 HTML。



爬虫需要用到 Python ,如果你还不会的话,那有必要先学习一下了。现在编程越来越火,程序员也成了高薪的代名词,不管写不写代码,学习一下编程也是有必要的。Python 是目前最火热的语言之一,上至老奶奶、下到小学生都在学习。

10 天时间虽然不能让你成为 Python 大神,但入门 Python、写一些小程序、小脚本却是绰绰有余的。年后再找工作,再也不用被 “掌握 Python 优先” 的职位拒之门外了!

推荐课程:

1. Python 新手入门课

极度舒适的新手入门课程,面向完全没有编程基础的同学。你将在一下午入门 Linux、Python 基础和Github 常用命令,为未来的编程大楼打下稳固的基础。



2. 楼 + 之 Python 基础

人人都学得会的 Python 入门课,从 0 到 1 掌握编程的概念,用 Python 创造你的第一个程序、 游戏 和网络爬虫。



3. Python3 简明教程

简明易懂的 Python3 课程,不仅适用于那些有其它语言基础的同学,对没有编程经验的同学也非常友好。本课程不仅讲解了 Python3 基础知识,还介绍了 PEP8、Virtualenv、测试、项目结构以及 Flask 相关内容。



4. 用 Python 实现各种常用算法

使用 Python 实现各种算法,主要知识点包括数据结构,哈希,数学算法,线性代数,搜索算法,排序算法,字符串。



过年期间,王者荣耀日流水过亿,又赚钱又好玩为什么不学?下面这些课程将教你快速一些小 游戏 ~

推荐课程:

1. 200 行 Python 代码实现 2048

本实验仅用200行的 python 代码完成2048小 游戏 的编写。通过本实验将学习 Python 基本知识,状态机的概念,以及编写 python 游戏 的步骤。为 Python 的进阶课程,需要用户具有 Python 的语法基础。

2. Python3 实现推理 游戏 Bagels

Bagels是可以和朋友一起玩的一个推理 游戏 。本实验将会一步步地用 Python3 实现这个 游戏 。本课程会用到一些 Python3 的新特性。



3. Python 实现康威生命 游戏

康威生命 游戏 是一个久负盛名的数学 游戏 ,有简单的规则和无穷无尽的组合。本课程将使用 pygame 模块来实现这样一个 游戏 ,让你在趣味 游戏 中提升对 Python 的理解,入门 pygame。



4. Python 实现推箱子 游戏

本课程通过一个简单的推箱子 游戏 ,来介绍 pygame 的一些相关内容,课程介绍中尽量避免专业词汇,从简单入手设计并开发一个推箱子 游戏 。



5. 基于 Pygame 开发贪吃蛇和俄罗斯方块

本课程基于Pygame开发贪吃蛇和俄罗斯方块,通过逐步学习Pygame基础知识,到从零开始实现 游戏 开发,课程难度由浅入深,内容通俗易懂,确保同学们能够很好的掌握和理解。



每个技术大牛都应该有自己的技术博客,如果是自己开发的,那更是加分无数。下面这些教程可以帮助你学习创建美观又实用的博客~

推荐课程:

1. Python3 基于 Flask 框架搭建个人博客

本课程中,我们将使用 Python 语言及 Flask 框架开发一个简单的博客系统。涉及 Flask Web 开发,使用 Peewee 构建数据模型,简单的 Jinja2 模板, Pygments 模块实现代码语法高亮,MarkDown 格式编写博客, Micawber 实现多媒体播放。



2. 使用 Github Pages 和 Hexo 搭建独立博客

本次课程我们将利用 github page 的特性来部署由 Hexo 框架渲染生成的静态博客。并且为博客添加插件以实现评论、七牛实现图床等功能。



3. Java 实现个人博客

利用 SSM 框架和简单的前端知识、Markdown 的富文本编辑器插件和第三方评论插件和 MySQL 数据库搭建一个简单但是功能完善的个人博客网站。



4. SpringBoot + Mybatis + Thymeleaf 搭建美观实用的个人博客

对于技术人员来说,拥有自己的个人博客应该是一件令人向往的事情,可以记录和分享自己的观点,独立开发以及独立维护一个博客网站,这种想法应该在很多人心中都有过,真的很酷,也因此我开发了 My Blog 博客系统,它是由 SpringBoot + Mybatis + Thymeleaf 等技术实现的 Java 博客系统,页面美观、功能齐全、部署简单及完善的代码,一定会给使用者无与伦比的体验。



没有一个春天不会到来。疫情总会散去,生活也还要继续。大家加油~

以上课程可以登陆实验楼官网获取。

⑵ python金融分析的实验目的和要求

python金融分析的实验目的和要求:Python适合做数据分析,有很多成熟的数据分析框架:Pandas,Numpy等,这些在课程中都有教。这些框架都可以很方便的完成数据分析的任务。

对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量。 class A: myname="class a" 上面就是一个类。

速度快:

Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。 免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

⑶ 121 11 个案例掌握 Python 数据可视化--星际探索

星空是无数人梦寐以求想了解的一个领域,远古的人们通过肉眼观察星空,并制定了太阴历,指导农业发展。随着现代科技发展,有了更先进的设备进行星空的探索。本实验获取了美国国家航空航天局(NASA)官网发布的地外行星数据,研究及可视化了地外行星各参数、寻找到了一颗类地行星并研究了天体参数的相关关系。
输入并执行魔法命令 %matplotlib inline, 设置全局字号,去除图例边框,去除右侧和顶部坐标轴。

本数据集来自 NASA,行星发现是 NASA 的重要工作之一,本数据集搜集了 NASA 官网发布的 4296 颗行星的数据,本数据集字段包括:

导入数据并查看前 5 行。

截至 2020 年 10 月 22 日 全球共发现 4296 颗行星,按年聚合并绘制年度行星发现数,并在左上角绘制 NASA 的官方 LOGO 。

从运行结果可以看出,2005 年以前全球行星发现数是非常少的,经计算总计 173 颗,2014 和 2016 是行星发现成果最多的年份,2016 年度发现行星 1505 颗。

对不同机构/项目/计划进行聚合并降序排列,绘制发现行星数目的前 20 。

2009 年至 2013 年,开普勒太空望远镜成为有史以来最成功的系外行星发现者。在一片天空中至少找到了 1030 颗系外行星以及超过 4600 颗疑似行星。当机械故障剥夺了该探测器对于恒星的精确定位功能后,地球上的工程师们于 2014 年对其进行了彻底改造,并以 K2 计划命名,后者将在更短的时间内搜寻宇宙的另一片区域。

对发现行星的方式进行聚合并降序排列,绘制各种方法发现行星的比例,由于排名靠后的几种方式发现行星数较少,因此不显示其标签。

行星在宇宙中并不会发光,因此无法直接观察,行星发现的方式多为间接方式。从输出结果可以看出,发现行星主要有以下 3 种方式,其原理如下:

针对不同的行星质量,绘制比其质量大(或者小)的行星比例,由于行星质量量纲分布跨度较大,因此采用对数坐标。

从输出结果可以看出,在已发现的行星中,96.25% 行星的质量大于地球。(图中横坐标小于 e 的红色面积非常小)

通过 sns.distplot 接口绘制全部行星的质量分布图。

从输出结果可以看出,所有行星质量分布呈双峰分布,第一个峰在 1.8 左右(此处用了对数单位,表示大约 6 个地球质量),第二个峰在 6.2 左右(大概 493 个地球质量)。

针对不同发现方式发现的行星,绘制各行星的公转周期和质量的关系。

从输出结果可以看出:径向速度(Radial Velocity)方法发现的行星在公转周期和质量上分布更宽,而凌日(Transit)似乎只能发现公转周期相对较短的行星,这是因为两种方法的原理差异造成的。对于公转周期很长的行星,其运行到恒星和观察者之间的时间也较长,因此凌日发现此类行星会相对较少。而径向速度与其说是在发现行星,不如说是在观察恒星,由于恒星自身发光,因此其观察机会更多,发现各类行星的可能性更大。

针对不同发现方式发现的行星,绘制各行星的距离和质量的关系。

从输出结果可以看出,凌日和径向速度对距离较为敏感,远距离的行星大多是通过凌日发现的,而近距离的行星大多数通过径向速度发现的。原因是:近距离的行星其引力对恒星造成的摆动更为明显,因此更容易观察;当距离较远时,引力作用变弱,摆动效应减弱,因此很难借助此方法观察到行星。同时,可以观察到当行星质量更大时,其距离分布相对较宽,这是因为虽然相对恒星的距离变长了,但是由于行星质量的增加,相对引力也同步增加,恒星摆动效应会变得明显。

将所有行星的质量和半径对数化处理,绘制其分布并拟合其分布。
由于:

因此,从原理上质量对数与半径对数应该是线性关系,且斜率为定值 3 ,截距的大小与密度相关。

从输出结果可以看出:行星质量和行星半径在对数变换下,具有较好的线性关系。输出 fix_xy 数值可知,其关系可以拟合出如下公式:

拟合出曲线对应的行星平均密度为:

同样的方式绘制恒星质量与半径的关系。

从输出结果可以看出,恒星与行星的规律不同,其质量与半径在对数下呈二次曲线关系,其关系符合以下公式:

同样的方式研究恒星表面重力加速度与半径的关系。

从输出结果可以看出,恒星表面对数重力加速度与其对数半径呈现较好的线性关系:

以上我们分别探索了各变量的分布和部分变量的相关关系,当数据较多时,可以通过 pd.plotting.scatter_matrix 接口,直接绘制各变量的分布和任意两个变量的散点图分布,对于数据的初步探索,该接口可以让我们迅速对数据全貌有较为清晰的认识。

通过行星的半径和质量,恒星的半径和质量,以及行星的公转周期等指标与地球的相似性,寻找诸多行星中最类似地球的行星。

从输出结果可以看出,在 0.6 附近的位置出现了一个最大的圆圈,那就是我们找到的类地行星 Kepler - 452 b ,让我们了解一下这颗行星:

数据显示,Kepler - 452 b 行星公转周期为 384.84 天,半径为 1.63 地球半径,质量为 3.29 地球质量;它的恒星为 Kepler - 452 半径为太阳的 1.11 倍,质量为 1.04 倍,恒星方面数据与太阳相似度极高。
以下内容来自网络。 开普勒452b(Kepler 452b) ,是美国国家航空航天局(NASA)发现的外行星, 直径是地球的 1.6 倍,地球相似指数( ESI )为 0.83,距离地球1400光年,位于为天鹅座。
2015 年 7 月 24 日 0:00,美国国家航空航天局 NASA 举办媒体电话会议宣称,他们在天鹅座发现了一颗与地球相似指数达到 0.98 的类地行星开普勒 - 452 b。这个类地行星距离地球 1400 光年,绕着一颗与太阳非常相似的恒星运行。开普勒 452 b 到恒星的距离,跟地球到太阳的距离相同。NASA 称,由于缺乏关键数据,现在不能说 Kepler - 452 b 究竟是不是“另外一个地球”,只能说它是“迄今最接近另外一个地球”的系外行星。

在银河系经纬度坐标下绘制所有行星,并标记地球和 Kepler - 452 b 行星的位置。

类地行星,是人类寄希望移民的第二故乡,但即使最近的 Kepler-452 b ,也与地球相聚 1400 光年。

以下通过行星的公转周期和质量两个特征将所有行星聚为两类,即通过训练获得两个簇心。
定义函数-计算距离
聚类距离采用欧式距离:

定义函数-训练簇心
训练簇心的原理是:根据上一次的簇心计算所有点与所有簇心的距离,任一点的分类以其距离最近的簇心确定。依此原理计算出所有点的分类后,对每个分类计算新的簇心。

定义函数预测分类
根据训练得到的簇心,预测输入新的数据特征的分类。

开始训练
随机生成一个簇心,并训练 15 次。

绘制聚类结果
以最后一次训练得到的簇心为基础,进行行星的分类,并以等高面的形式绘制各类的边界。

从运行结果可以看出,所有行星被分成了两类。并通过上三角和下三角标注了每个类别的簇心位置。
聚类前
以下输出了聚类前原始数据绘制的图像。

⑷ python食谱组合的实验目的

1、python食谱组合的实验目的是了解 Python 的基本编程环境,熟悉其主要组成部分和使用。
2、熟悉 turtle 库语法元素,了解其绘图坐标体系、画笔控制函数和运动命令函数。通过程序实例,初步掌握 Python 程序设计的基本概念、编程规则和开发过程。
3、掌握 Python 的基本数据类型的概念和使用;运用 Python 的标准数学库进行数值计算;掌握字符串类型的格式化操作方法和应用。

⑸ Python操作实验题,需要详细源代码,求求各位计算机大神

按照题目要求编写的Python程序如下

(注意 幸运数应该是前两位数字之和等于后两位数字之和的四位正整数)

第1题

def luck_number(n):

if len(str(n))==4:

a=n%10;

b=n//10%10

c=n//100%10

d=n//1000%10

if d+c==b+a:

return True

else:

return False

else:

return False

a,b=input().split()

count=0

for i in range(int(a),int(b)+1):

if luck_number(i)==True:

count+=1

if count%5==0:

print("%d"% i)

else:

print("%d "% i,end='')

源代码(注意源代码的缩进)

⑹ python实验总结

#!/usr/bin/env python # Filename: appui.py """ .. moleauthor:: .... .. test mole of Tkinter """ from Tkinter import * import tkMessageBox root = Tk() root.geometry('850x40+80+80') #设置窗体高宽与窗体相对屏幕左上角位置 class...

阅读全文

与python系列实验相关的资料

热点内容
iphone13对wap3加密 浏览:553
pdf文件打开失败 浏览:911
dubbo怎么调用不同服务器接口 浏览:38
全能解压王app历史版本 浏览:73
优先队列与拓扑排序算法 浏览:279
pdf转换formacbook 浏览:869
pdf文件内容怎么编辑 浏览:46
134压缩机排气温度多少 浏览:254
unity等待编译后 浏览:804
黑鲨手机锁屏视频在哪个文件夹 浏览:779
wow地图解压后怎么压缩 浏览:819
有pdf却打不开 浏览:460
七星彩软件app怎么下载 浏览:217
32单片机的重映射哪里改 浏览:816
为什么前端不用刷算法题 浏览:708
对称加密系统和公钥加密系统 浏览:428
历史地理pdf 浏览:606
物联网云服务器框架 浏览:648
sybaseisql命令 浏览:183
android权威编程指南pdf 浏览:663