1. 双线性插值法原理 python实现
码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!
一. 双线性插值法原理:
① 何为线性插值?
插值就是在两个数之间插入一个数,线性插值原理图如下:
② 各种插值法:
插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:
srcX = dstX * (srcWidth/dstWidth)
srcY = dstY * (srcHeight/dstHeight)
(dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。
那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。
不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。
最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。
双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。
双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。
③ 双线性插值算法原理
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。
④ 举例说明
二. python实现灰度图像双线性插值算法:
灰度图像双线性插值放大缩小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
双线性插值
:param input_signal: 输入图像
:param zoom_multiples: 放大倍数
:return: 双线性插值后的图像
'''
input_signal_cp = np.(input_signal) # 输入图像的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)
# 输出图像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 输出图片
for i in range(output_row):
for j in range(output_col):
# 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
temp_x = i / output_row * input_row
temp_y = j / output_col * input_col
x1 = int(temp_x)
y1 = int(temp_y)
x2 = x1
y2 = y1 + 1
x3 = x1 + 1
y3 = y1
x4 = x1 + 1
y4 = y1 + 1
u = temp_x - x1
v = temp_y - y1
# 防止越界
if x4 >= input_row:
x4 = input_row - 1
x2 = x4
x1 = x4 - 1
x3 = x4 - 1
if y4 >= input_col:
y4 = input_col - 1
y3 = y4
y1 = y4 - 1
y2 = y4 - 1
# 插值
output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度图像双线性插值实验结果:
四. 彩色图像双线性插值python实现
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
for j in range(dstW-1):
scrx=(i+1)*(scrH/dstH)
scry=(j+1)*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色图像双线性插值实验结果:
六. 最近邻插值算法和双三次插值算法可参考:
① 最近邻插值算法: https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104936006
② 双三次插值算法: https://www.cnblogs.com/wojianxin/p/12516762.html
https://blog.csdn.net/Ibelievesunshine/article/details/104942406
七. 参考内容:
https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104939936
2. 在Python程序中的插值误差问题,怎么解决
代码如下所示:import numpy as npfrom matplotlib import pyplot as pltfrom scipy.interpolate import interp1dx=np.linspace(0,10*np.pi,num=20)y=np.sin(x)f1=interp1d(x,y,kind='linear')#线性插值f2=interp1d(x,y,kind='cubic')#三次样条插值x_pred=np.linspace(0,10*np.pi,num=1000)y1=f1(x_pred)y2=f2(x_pred)plt.figure()plt.plot(x_pred,y1,'r',label='linear')plt.plot(x,f1(x),'b--','origin')plt.legend()plt.show()plt.figure()plt.plot(x_pred,y2,'b--',label='cubic')plt.legend()plt.show()
3. python线性插值解析
在缺失值填补上如果用前后的均值填补中间的均值, 比如,0,空,1, 我们希望中间填充0.5;或者0,空,空,1,我们希望中间填充0.33,0.67这样。
可以用pandas的函数进行填充,因为这个就是线性插值法
df..interpolate()
dd=pd.DataFrame(data=[0,np.nan,np.nan,1])
dd.interpolate()
补充知识:线性插值公式简单推导
以上这篇python线性插值解析就是我分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
4. Python气象数据处理与绘图(12):轨迹(台风路径,寒潮路径,水汽轨迹)绘制
寒潮是笔者主要的研究方向,寒潮路径作为寒潮重要的特征,是寒潮预报的重点之一,同样的道理也适用在台风研究以及降水的水汽来源研究中。关于路径的计算以及获取方法(比如轨迹倒推,模型追踪等等方法,台风有自己现成的数据集,比如ibtracs数据集等等)并不在本文的介绍范围之内,本文主要介绍在获取了相应的路径坐标后,如何在图中美观的展现。
上图展现了近40年东北亚区域的冬季冷空气活动路径,绘制这类图需要的数据只需为每条路径的N个三维坐标点,第一第二维分别为longitude和latitudee,第三维则比较随意,根据需要选择,比如说需要体现高度,那就用高度坐标,需要体现冷空气强度,那就用温度数据,水汽可以用相对湿度,台风也可以用速度等等。
通常此类数据是由.txt(.csv)等格式存储的,读取和处理方法可参考我的“Python气象数据处理与绘图(1):数据读取”,本文主要介绍绘图部分。
当然根据需要,也可以直接绘制两维的轨迹,即取消掉颜色数组,用最简单的plot语句,循环绘制即可。
有一个陷阱需要大家注意的是,当轨迹跨越了东西半球时,即穿越了0°或者360°经线时,它的连接方式是反向绕一圈,比如下图所示,你想要蓝色的轨迹,然而很有可能得到绿色的,这是因为你的网格数组的边界是断点,系统不会自动识别最短路径,只会在数组中直接想连,因为这不是循环数组。
我目前的解决办法是这样的:如果你的数据是0°-360°格式,那么变为-180°-180°的格式,反之相互转换。但是如果你的数据两种都出现了断点,也就是绕了地球一圈多,那无论怎样都么得办法了,我目前的思路是将数据转换成极坐标数据格式,理论上是可行的,CARTOPY的绘图也是支持极坐标数据的,具体实施还需要再试试。
5. python插值的时候,怎么获取插值后的数据
scipy中好像并没有进行下采样的函数,嗯..难道是因为太过简单了么,不过好像用一个循环就可以完成,但如果把向量看成一个时间序列,使用pandas中的date_range模块也可以十分方便的以不同频率进行采样,并且,很多对文件的操作都是使用pandas操作的。