导航:首页 > 编程语言 > java线程的回收

java线程的回收

发布时间:2023-03-26 14:35:48

java线程的几种状态

总结了6种状态,希望对你所有帮助:

1、NEW状态是指线程刚创建, 尚未启动

2、RUNNABLE状态是线程正在正常运行中, 当然可能会有某种耗时计算/IO等待的操作/CPU时间片切换等, 这个状态下发生的等待一般是其他系统资源, 而不是锁, Sleep等

3、BLOCKED这个状态下, 是在多个线程有同步操作的场景, 比如正在等待另一个线程的synchronized 块的执行释放, 或者可重入的 synchronized块里别人调用wait() 方法, 也就是这里是线程在等待进入临界区

4、WAITING这个状态下是指线程拥有了某个锁之后, 调用了他的wait方法, 等待其他线程/锁拥有者调用 notify / notifyAll 一遍该线程可以继续下一步操作, 这里要区分 BLOCKED 和 WATING 的区别, 一个是在临界点外面等待进入, 一个是在临界点里面wait等待别人notify, 线程调用了join方法 join了另外的线程的时候, 也会进入WAITING状态, 等待被他join的线程执行结束

5、TIMED_WAITING这个状态就是有限的(时间限制)的WAITING, 一般出现在调用wait(long), join(long)等情况下, 另外一个线程sleep后, 也会进入TIMED_WAITING状态

6、TERMINATED这个状态下表示 该线程的run方法已经执行完毕了, 基本上就等于死亡了(当时如果线程被持久持有, 可能不会被回收)

㈡ java线程存放在jvm的哪个区域方法又存放在哪个区呢

聊到JAVA中的方法,大多数人对于方法存储在方法区还是栈区(虚拟机栈)是很迷茫的。其实方法是存在方法区的下面我们就细细说一下JVM中的 方法区 VS 栈区方法区:用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,方法编译出的字节码也是保存在这

㈢ Java垃圾回收无效线程吗

前面是我自己理解的后面是复制的java中垃圾回收以前听老师讲好像是内存满了他才去做一次整体垃圾回收,在回收垃圾的同时会调用finalize方法.你在构造一个类时可以构造一个类时覆盖他的finalize方法以便于该类在被垃圾回收时执行一些代码,比如释放资源.1.JVM的gc概述gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存。java语言并不要求jvm有gc,也没有规定gc如何工作。不过常用的jvm都有gc,而且大多数gc都使用类似的算法管理内存和执行收集操作。在充分理解了垃圾收集算法和执行过程后,才能有效的优化它的性能。有些垃圾收集专用于特殊的应用程序。比如,实时应用程序主要是为了避免垃圾收集中断,而大多数OLTP应用程序则注重整体效率。理解了应用程序的工作负荷和jvm支持的垃圾收集算法,便可以进行优化配置垃圾收集器。垃圾收集的目的在于清除不再使用的对象。gc通过确定对象是否被活动对象引用来确定是否收集该对象。gc首先要判断该对象是否是时候可以收集。两种常用的方法是引用计数和对象引用遍历。1.1.引用计数引用计数存储对特定对象的所有引用数,也就是说,当应用程序创建引用以及引用超出范围时,jvm必须适当增减引用数。当某对象的引用数为0时,便可以进行垃圾收集。1.2.对象引用遍历早期的jvm使用引用计数,现在大多数jvm采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,gc必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。下一步,gc要删除不可到达的对象。删除时,有些gc只是简单的扫描堆栈,删除未标记的未标记的对象,并释放它们的内存以生成新的对象,这叫做清除(sweeping)。这种方法的问题在于内存会分成好多小段,而它们不足以用于新的对象,但是组合起来却很大。因此,许多gc可以重新组织内存中的对象,并进行压缩(compact),形成可利用的空间。为此,gc需要停止其他的活动活动。这种方法意味着所有与应用程序相关的工作停止,只有gc运行。结果,在响应期间增减了许多混杂请求。另外,更复杂的gc不断增加或同时运行以减少或者清除应用程序的中断。有的gc使用单线程完成这项工作,有的则采用多线程以增加效率。2.几种垃圾回收机制2.1.标记-清除收集器这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。2.2.标记-压缩收集器有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。2.3.复制收集器这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,jvm生成的新对象则放在另一半空间中。gc运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。2.4.增量收集器增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾。这会造成较小的应用程序中断。2.5.分代收集器这种收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。jvm生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。2.6.并发收集器并发收集器与应用程序同时运行。这些收集器在某点上(比如压缩时)一般都不得不停止其他操作以完成特定的任务,但是因为其他应用程序可进行其他的后台操作,所以中断其他处理的实际时间大大降低。2.7.并行收集器并行收集器使用某种传统的算法并使用多线程并行的执行它们的工作。在多cpu机器上使用多线程技术可以显着的提高java应用程序的可扩展性。3.SunHotSpot1.4.1JVM堆大小的调整SunHotSpot1.4.1使用分代收集器,它把堆分为三个主要的域:新域、旧域以及永久域。Jvm生成的所有新对象放在新域中。一旦对象经历了一定数量的垃圾收集循环后,便获得使用期并进入旧域。在永久域中jvm则存储class和method对象。就配置而言,永久域是一个独立域并且不认为是堆的一部分。下面介绍如何控制这些域的大小。可使用-Xms和-Xmx控制整个堆的原始大小或最大值。下面的命令是把初始大小设置为128M:java–Xms128m–Xmx256m为控制新域的大小,可使用-XX:NewRatio设置新域在堆中所占的比例。下面的命令把整个堆设置成128m,新域比率设置成3,即新域与旧域比例为1:3,新域为堆的1/4或32M:java–Xms128m–Xmx128m–XX:NewRatio=3可使用-XX:NewSize和-XX:MaxNewsize设置新域的初始值和最大值。下面的命令把新域的初始值和最大值设置成64m:java–Xms256m–Xmx256m–Xmn64m永久域默认大小为4m。运行程序时,jvm会调整永久域的大小以满足需要。每次调整时,jvm会对堆进行一次完全的垃圾收集。使用-XX:MaxPerSize标志来增加永久域搭大小。在WebLogicServer应用程序加载较多类时,经常需要增加永久域的最大值。当jvm加载类时,永久域中的对象急剧增加,从而使jvm不断调整永久域大小。为了避免调整,可使用-XX:PerSize标志设置初始值。下面把永久域初始值设置成32m,最大值设置成64m。java-Xms512m-Xmx512m-Xmn128m-XX:PermSize=32m-XX:MaxPermSize=64m默认状态下,HotSpot在新域中使用复制收集器。该域一般分为三个部分。第一部分为Eden,用于生成新的对象。另两部分称为救助空间,当Eden充满时,收集器停止应用程序,把所有可到达对象复制到当前的from救助空间,一旦当前的from救助空间充满,收集器则把可到达对象复制到当前的to救助空间。From和to救助空间互换角色。维持活动的对象将在救助空间不断复制,直到它们获得使用期并转入旧域。使用-XX:SurvivorRatio可控制新域子空间的大小。同NewRation一样,SurvivorRation规定某救助域与Eden空间的比值。比如,以下命令把新域设置成64m,Eden占32m,每个救助域各占16m:java-Xms256m-Xmx256m-Xmn64m-XX:SurvivorRation=2如前所述,默认状态下HotSpot对新域使用复制收集器,对旧域使用标记-清除-压缩收集器。在新域中使用复制收集器有很多意义,因为应用程序生成的大部分对象是短寿命的。理想状态下,所有过渡对象在移出Eden空间时将被收集。如果能够这样的话,并且移出Eden空间的对象是长寿命的,那么理论上可以立即把它们移进旧域,避免在救助空间反复复制。但是,应用程序不能适合这种理想状态,因为它们有一小部分中长寿命的对象。最好是保持这些中长寿命的对象并放在新域中,因为复制小部分的对象总比压缩旧域廉价。为控制新域中对象的复制,可用-XX:TargetSurvivorRatio控制救助空间的比例(该值是设置救助空间的使用比例。如救助空间位1M,该值50表示可用500K)。该值是一个百分比,默认值是50。当较大的堆栈使用较低的sruvivorratio时,应增加该值到80至90,以更好利用救助空间。用-XX:maxtenuringthreshold可控制上限。为放置所有的复制全部发生以及希望对象从eden扩展到旧域,可以把MaxTenuringThreshold设置成0。设置完成后,实际上就不再使用救助空间了,因此应把SurvivorRatio设成最大值以最大化Eden空间,设置如下:java…-XX:MaxTenuringThreshold=0–XX:SurvivorRatio=50000…4.BEAJRockitJVM的使用BeaWebLogic8.1使用的新的JVM用于Intel平台。在Bea安装完毕的目录下可以看到有一个类似于jrockit81sp1_141_03的文件夹。这就是Bea新JVM所在目录。不同于HotSpot把Java字节码编译成本地码,它预先编译成类。JRockit还提供了更细致的功能用以观察JVM的运行状态,主要是独立的GUI控制台(只能适用于使用Jrockit才能使用jrockit81sp1_141_03自带的console监控一些cpu及memory参数)或者WebLogicServer控制台。BeaJRockitJVM支持4种垃圾收集器:4.1.1.分代复制收集器它与默认的分代收集器工作策略类似。对象在新域中分配,即JRockit文档中的nursery。这种收集器最适合单cpu机上小型堆操作。4.1.2.单空间并发收集器该收集器使用完整堆,并与背景线程共同工作。尽管这种收集器可以消除中断,但是收集器需花费较长的时间寻找死对象,而且处理应用程序时收集器经常运行。如果处理器不能应付应用程序产生的垃圾,它会中断应用程序并关闭收集。分代并发收集器这种收集器在护理域使用排它复制收集器,在旧域中则使用并发收集器。由于它比单空间共同发生收集器中断频繁,因此它需要较少的内存,应用程序的运行效率也较高,注意,过小的护理域可以导致大量的临时对象被扩展到旧域中。这会造成收集器超负荷运作,甚至采用排它性工作方式完成收集。4.1.3.并行收集器该收集器也停止其他进程的工作,但使用多线程以加速收集进程。尽管它比其他的收集器易于引起长时间的中断,但一般能更好的利用内存,程序效率也较高。默认状态下,JRockit使用分代并发收集器。要改变收集器,可使用-Xgc:,对应四个收集器分别为gen,singlecon,gencon以及parallel。可使用-Xms和-Xmx设置堆的初始大小和最大值。要设置护理域,则使用-Xns:java–jrockit–Xms512m–Xmx512m–Xgc:gencon–Xns128m…尽管JRockit支持-verbose:gc开关,但它输出的信息会因收集器的不同而异。JRockit还支持memory、load和codegen的输出。注意:如果使用JRockitJVM的话还可以使用WLS自带的console(C:\bea\jrockit81sp1_141_03\bin下)来监控一些数据,如cpu,memery等。要想能构监控必须在启动服务时startWeblogic.cmd中加入-Xmanagement参数。5.如何从JVM中获取信息来进行调整-verbose.gc开关可显示gc的操作内容。打开它,可以显示最忙和最空闲收集行为发生的时间、收集前后的内存大小、收集需要的时间等。打开-xx:+printgcdetails开关,可以详细了解gc中的变化。打开-XX:+PrintGCTimeStamps开关,可以了解这些垃圾收集发生的时间,自jvm启动以后以秒计量。最后,通过-xx:+PrintHeapAtGC开关了解堆的更详细的信息。为了了解新域的情况,可以通过-XX:=PrintTenuringDistribution开关了解获得使用期的对象权。6.Pdm系统JVM调整6.1.服务器:前提内存1G单CPU可通过如下参数进行调整:-server启用服务器模式(如果CPU多,服务器机建议使用此项)-Xms,-Xmx一般设为同样大小。800m-Xmn是将NewSize与MaxNewSize设为一致。320m-XX:PerSize64m-XX:NewSize320m此值设大可调大新对象区,减少FullGC次数-XX:MaxNewSize320m-XX:NewRatoNewSize设了可不设。-XX:SurvivorRatio-XX:userParNewGC可用来设置并行收集-XX:ParallelGCThreads可用来增加并行度-XXUseParallelGC设置后可以使用并行清除收集器-XX:UseAdaptiveSizePolicy与上面一个联合使用效果更好,利用它可以自动优化新域大小以及救助空间比值6.2.客户机:通过在JNLP文件中设置参数来调整客户端JVMJNLP中参数:initial-heap-size和max-heap-size这可以在framework的RequestManager中生成JNLP文件时加入上述参数,但是这些值是要求根据客户机的硬件状态变化的(如客户机的内存大小等)。建议这两个参数值设为客户机可用内存的60%(有待测试)。为了在动态生成JNLP时以上两个参数值能够随客户机不同而不同,可靠虑获得客户机系统信息并将这些嵌到首页index.jsp中作为连接请求的参数。在设置了上述参数后可以通过Visualgc来观察垃圾回收的一些参数状态,再做相应的调整来改善性能。一般的标准是减少fullgc的次数,最好硬件支持使用并行垃圾回收(要求多CPU)。

㈣ Java线程是否会被垃圾回收

上面的例程运行结果是两个线程在程序被强制终止之前一直运行。threadisrunning...threadisrunning...threadisrunning...ExecutedSystem.gc(),WeakReferencestillkeepThread[Thread-0,5,main]threadisrunning...threadisrunning...threadisrunning...ExecutedSystem.gc(),WeakReferencestillkeepThread[Thread-0,5,main]threadisrunning...threadisrunning...
运行中的线程是称之为垃圾回收根对象的一种,不会被垃圾回收。当垃圾回收器判断一个对象是否可达,总是使用垃圾回收根对象作为参考点。
例如,主线程并没有被引用,但是不会被垃圾回收。
垃圾回收根对象是可在堆之外被访问的对象。一个对象可由于下列原因成为GC根对象:SystemClass
由自举/系统类加载器加载的类。例如,rt.jar中所有诸如java.util.*的类。
JNILocal
原生代码中的本地变量,例如用户定义的JNI代码或JVM内部代码。
JNIGlobal
原生代码中的全局变量,例如用户定义的JNI代码或JVM内部代码。
ThreadBlock
当前活跃的线程块中引用的对象。
Thread
启动且未停止的线程。
BusyMonitor
其wait()或notify()方法被调用,或被同步synchronized的对象。例如,通过调用synchronized(Object)或者进入其某个synchronized方法。静态方法对应类,非静态方法对应对象。
JavaLocal
本地变量。例如,仍在线程的栈中的方法输入参数或本地创建的对象。
NativeStack
(例如用户定义的JNI代码或JVM内部代码这样的)原生代码的入或出参数。通常发生在许多方法有原生部分,方法参数处理的对象成为GC根对象。例如,参数用于文件、网络I/O或反射。
Finalizer
在队列中等待其finalizer运行的对象。
Unfinalized
拥有finalize方法,但是还没有被终结且不在finalizer队列的对象。
Unreachable
从其他根对象不可达的对象,但是被内存分析器标记为根对象。
Unknown
没有根类型的对象。一些转储(mp),例如IBM可移植对转储文件,没有根信息。对于这些转储,内存分析器解析程序将没有被其他根对象引用的对象标记为此类根对象。参考

㈤ 请教java的线程池是如何回收线程的

工作线程回收需要满足三个条件:
1) 参数allowCoreThreadTimeOut为true
2) 该线程在keepAliveTime时间内获取不到任务,即空闲这么长时间
3) 当前线程池大小 > 核心线程池大小corePoolSize。

linux查看java线程,怎么回收无用的线程

1. 先进行一次thread mp (jstack -m <pid> 或者 kill -3 <pid> , 或者使用jconsole, jvisualvm等) (jstack 命令有一些选项不是每个平台都支持的, jconsole jvisualvm都是有界面的, 如果你要运行一般需要配置agent或者重定向display到某台机器).
2. 然后过了一段时间再做一次, 如果发现同一个thread NID 还是停在同一个地方, 基本上可以怀疑是否挂住了(一般只需要查看你业务相关的stack信息就行了).
3. 还有一种就是你的日志很详细, 也可以看到一些的情况(打印到某个地方就卡住了, 呵呵).

㈦ static的线程池会自动回收吗

是唤悄的,static的线程池会自动回收线程。当任务处理完成时,线程池会自动将线程从池中移除,并将其放回可重用的线程池中,使其可以再次被举链陪使用。这样可以有效地减少系统资源的消正蠢耗。

㈧ java中垃圾回收器让工作线程停顿下来是怎么做的

1、jvm中,在执行垃圾收集算法时,Java应用程序的其他所有除了垃圾收集收集器线程之外的线程都被挂起。此时,系统只能允许GC线程进行运行,其他线程则会全部暂停,等待GC线程执行完毕后才能再次运行。这些工作都是由虚拟机在后台自动发起和自动完成的,是在用户不可见的情况下把用户正常工作的线程全部停下来,这对于很多的应用程序,尤其是那些对于实时性要求很高的程序来说是难以接受的。 但不是说GC必须STW(Stop-The-World,全局暂停), 你也可以选择降低运行速度但是可以并发执行的收集算法,这取决于你的业务。

㈨ java垃圾回收机制,当变量失去引用,出作用域之后,java垃圾回收线程,是立即回收吗

对于:
Test t = new Test();
t = null;

垃圾回收肯定不会进行,尽管t已经没有指向了,但它仍旧在方法内,它还可以被再次赋值,无需重新定义,只有一个对象失去所有引用,并离开所有相关过程或者方法时,才会被回收,回收适时进行,一般很快,但你无法从程序内部追踪到,只要能追踪到的,就说明引用还未释放

阅读全文

与java线程的回收相关的资料

热点内容
32单片机的重映射哪里改 浏览:814
为什么前端不用刷算法题 浏览:706
对称加密系统和公钥加密系统 浏览:428
历史地理pdf 浏览:604
物联网云服务器框架 浏览:646
sybaseisql命令 浏览:181
android权威编程指南pdf 浏览:661
哪些软件属于加密软件 浏览:644
文件夹75丝什么意思 浏览:468
最便宜sop8单片机 浏览:964
图解周易预测学pdf 浏览:418
c盘莫名奇妙多了几个文件夹 浏览:169
贵州花溪门票优惠app哪个好 浏览:801
如何说话不会让人有被命令的感觉 浏览:438
哪里可下载湘工惠app 浏览:263
福特python 浏览:310
pdf转换成word表格 浏览:351
无线远端服务器无响应是什么意思 浏览:670
两位整数倒序输出python 浏览:781
为什么我的世界天空服务器进不去 浏览:262