Ⅰ python matplotlib绘制条形柱状图并添加数据标签
最近在学习数据分析,用matplotlit绘制条形图,柱状图老师讲了加标签的方余配法,但是没有讲横向条形图加数据标签的方法,但是我想到业务场景可能会用到,于是自己写了一个脚本练习一好指下,用竖向条形图的方法加数据标签,怎么都加不上,网络找到一些解决方法,然后自己改了一下终于解决了这个问题。竖袜指
重点在这个for循环
Ⅱ 如何用Python显示出一维波动方程的动态图像
Python有一些绘图的功能,使用turtle模块。
在命令行输入
python.exe -m turtledemo
可以打开Python安装时,系统自带的一些演示程序。
感觉功能还是比较多的。
程序实现其实还是比较简单,主要是得搞懂倒是给的文献,还得跟导师交流如何演示出效果。
Ⅲ 怎么用Python制作一个好玩炫酷的GIF动态图
importsys
importnumpyasnp
importmatplotlib.pyplotasplt
frommatplotlib.animationimportFuncAnimation
fig,ax=plt.subplots()
fig.set_tight_layout(True)
#询问图形在屏幕上的大小和DPI(每英寸点数)
#注意当把图形保存为文件时,需要为此单独再提供一个DPI
print('figsize:{0}DPI,sizeininches{1}'.format(
fig.get_dpi(),fig.get_size_inches()))
#绘制一个保持不变(不会被重新绘制)的散点图以及初始直线
x=np.arange(0,20,0.1)
ax.scatter(x,x+np.random.normal(0,3.0,len(x)))
line,=ax.plot(x,x-5,'r-',linewidth=2)
defupdate(i):
label='timestep{0}'.format(i)
print(label)
#更新直线和轴(用一个新X轴标签)
#以元组形式返回这一帧需要重新绘制的物体
line.set_ydata(x-5+i)
ax.set_xlabel(label)
returnline,ax
if__name__=='__main__':
#会为每一帧调用Update函数
#这里FunAnimation设置一个10帧动画,每帧间隔200ms
anim=FuncAnimation(fig,update,frames=np.arange(0,10),interval=200)
iflen(sys.argv)>1andsys.argv[1]=='save':
anim.save('line.gif',dpi=80,writer='imagemagick')
else:
#Plt.show()会一直循环动画
plt.show()
可以生成下面这种图
Ⅳ python绘制条形图数据太多怎么办
要清洗。
1、去除无效数据。数据都是有效数据,只是你不想显示那些过份异常的数或凳据,那么,就进行去噪处理。
2、去噪罩枝分两步:检测噪点,噪点修物团敏正,即可进行无效数据清理。Python是一门流行的编程语言。它由GuidovaRossum创建,于1991年发布。
Ⅳ Python-openpyxl教程6 - 图表之面积图和条形图
openpyxl可以使用以下图表:
图表至少由一系列一个或多个数据点组成。系列本身对凳塌单元格范围的引用组成。
默认情况下图表的左上角固定在单元格E15上,大小为15x7.5厘米(大约5列乘14行 )。可以通过设置图标的anchor,width和height属性来更改此设置。实际大小将取决于操作系统和设备。
其他锚点是孝粗圆可能的。请参考 openpyxl.drawing.spreadsheet_drawing 来获取更多信息。
面积图类似于折线图,不同之处在于填充了绘制线下方的区域。通过将分组设置为"标准","堆叠"或"百分比堆叠",可以使用不同的变体。默认为"标准"。
您还可以创建三维面积图
这将生成一个简单的三维面积图,其中第三个轴可用巧塌于替换图例:
在条形图中,值被绘制为水平条或垂直列
这将产生四个图表,说明各种可能性。
您还可以创建三维条形图
这将生成一个简单的三维条形图。
note:有兴趣的小伙伴可以帮忙看下在 office下的现象
Ⅵ python中怎样画条形图
画条形图要用到 pyplot 中的 bar 函数,该函数的基本语法为:
bar(x, height, [width], **kwargs)
import matplotlib.pyplot as plt
# 这两行代码解决 plt 中文显示的问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
waters = ('碳酸饮料', '绿茶', '矿泉水', '果汁', '其他')
buy_number = [6, 7, 6, 1, 2]
plt.bar(waters, buy_number)
plt.title('男性购买饮用水情况的调查结果')
plt.show()
Ⅶ 如何用python绘制各种图形
1.环境
系统:windows10
python版本:python3.6.1
使用的库:matplotlib,numpy
2.numpy库产生随机数几种方法
import numpy as np
numpy.random
rand(d0,d1,...,dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0,d1,...,dn)查询结果为标准正态分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之间(半开区间 [low, high)),size个数据
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之间(闭区间 [low, high)),size个数据
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散点图
x x轴
y y轴
s 圆点面积
c 颜色
marker 圆点形状
alpha 圆点透明度#其他图也类似这种配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
8.箱型图
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 点的形状,whis虚线的长度
Ⅷ 如何用python绘制简单条形图
如何用python绘制简单条形图呢?这里离不开matplotlib的使用。
条形图是数据可视化图形中很基础也很常用的一种图,简单解释下:条形图也叫长条图(英语:bar chart),亦称条图(英语:bar graph)、条状图、棒形图、柱状图、条形图表,是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列,或用多维方式表达。
那么一个普通的条形图是长什么样子的呢?
当!当!当!就是下图的这个样子:
图先亮出来啦,接下来研究这个图是怎么画的吧,先看一下原数据长什么样子:
实际画图的流程和画折线图很相近,只是用到的画图函数不一样,绘制条形图的函数plt.bar():
由于这只是最简单的一个条形图,实际上条形图的函数plt.bar()还有不少可以探索的参数设置,和对折线图函数plt.plot()的探索差不多,有兴趣的孩子可以自己去进行探索哦。
按照条形长短进行排序展示的条形图
当然也可以有其他的设置,比如说上图中的线条高低参差不齐,这是因为x轴的数据是按照学校名称进行排序的,那么可不可以按照分数的高低进行排序呢?也就是让所有的长方形按照从高到矮或者从矮到高的顺序进行排列?
当然可以啦!这里需要强调的是,条的高低排列等信息都是来源于原数据的,要想让条形的顺序发生改变,需要对画图的来源数据进行更改呢!
把原数据逆序排序后截取前十名数据赋值给data_yuwen,作为新的数据源传入画图函数plt.bar(),画出来的图自然就不一样了。
先看一眼数据长什么样子:
根据这个数据源绘制出的图形如下,由于用来画图的数据进行了降序排序操作,所以生成条形图的条也会进行降序排序展示:
很多时候,我们常见的条形图还有另一种展现形式,那就是横向的条形图,比较火的那种动态条形图绝大多数也都是横向的条形图,那么横向的条形图如何绘制呢?
理解plt.bar()主要参数
其实也不难,只要清楚plt.bar()函数中主要参数的作用就可以了!条形图函数中有五个主要参数,分别是x,height,width,bottom,orientation。其中x控制的是每个条在x轴上位置,height控制的是每个条的长度,width控制的是每个条的宽度,bottom控制的是每个条在y轴方向的起始位置,orientation控制的是条形的方向,是纵向还是横向,默认是纵向的。
通过一个小例子理解下这几个参数的作用:
上边的几行代码输出的图形如下:
对比着代码和实际输出的条形图,各个主要参数的作用是不是一目了然啦?
横向条形图
理解了这几个参数作用后,纵向的条形图转换成横向的条形图就没什么难度了!
需要设置所有条形在x轴的位置都为0,也就全部从最左侧开始画条形;由于是横向条形图,所以实际上条的宽度显示的是数据大小,将width参数设置成原数据中的语文成绩;bottom控制每个条在y轴方向的起始位置,设置bottom=range(10)设置每个条形在y轴的起始位置各不相同避免有条形重叠;height控制的是每个条在y轴方向上的长度,条形图横向设置后,在y轴上的长度失去了衡量数据的意义,所以直接设置一个常数即可;最后设置条形的方向为横向,即orientation=“horizontal”。
温馨提示:数据和标签一定要匹配,即plt.bar()重点的数据要和plt.yticks()中提取出来的标签一一对应,一旦不匹配,整个图展现的结果就是一个错误的结果!
上述代码生成的条形图如下:
感觉上边这种生成横向条形图的方式有点点绕,和人们的习惯认知有点不大一样,难道画一个横向条形图就非得转变自己的习惯认知这么反人类吗?
当然不是的,实际上有更简单的方法绘制一个横向条形图,之所以没有一开始就直接用这种简单的方法,也是为了让大家体会下条形图参数的灵活设置而已,而且如果比较绕的方法都能理解了,简单的方法理解和运用起来就更没有难度了啊!
不卖关子了,我们来认识下和plt.bar()函数类似的plt.barh()函数。
plt.barh()函数是专门绘制水平条形图的函数,主要的参数有:
y 控制y轴显示的标签来源width 控制横向条形的长度,即用来进行对比的数据源height 条形的宽度需要设置的参数主要就是这三个,比用plt.bar()函数绘制水平条形图简单了很多,具体代码如下:
效果图:
和用plt.bar()函数绘制的横向条形图一毛一样对不对?以后有需求绘制横向条形图,尽量用plt.barh()函数吧,毕竟它是专门绘制这种类型图的,简单好用。
然而实际工作中对于条形图的需求不只是这些,比如例子中只是对各个学校语文成绩的展示,有时候需要各个学科的成绩同时展现在一幅条形图中,有时候也需要绘制堆积条形图对各学科的成绩以及总成绩进行展示,这些图又该如何绘制呢?其实只要理解了各个参数的含义,绘制这些图也不在话下,至于具体怎么画,且看下回分解啊!
Ⅸ python中获取的数据为矩阵形式,如何在python以实时的形式绘制出动态图
你好,下面是一个画动态图的例子。
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
y1 = []
for i in range(50):
y1.append(i) # 每迭代一次,将i放入y1中画出来
ax.cla() # 清除键
ax.bar(y1, label='test', height=y1, width=0.3)
ax.legend()
plt.pause(0.1)
Ⅹ python可视化数据分析常用图大集合(收藏)
python数据分析常用图大集合:包含折线图、直方图、垂直条形图、水平条形图、饼图、箱线图、热力图、散点图、蜘蛛图、二元变量分布、面积图、六边形图等12种常用可视化数据分析图,后期还会不断的收集整理,请关注更新!
以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn
一、折线图
折线图可以用来表示数据随着时间变化的趋势
Matplotlib
plt.plot(x, y)
plt.show()
Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()
二、直方图
直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值
Matplotlib
Seaborn
三、垂直条形图
条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。
Matplotlib
Seaborn
1plt.show()
四、水平条形图
五、饼图
六、箱线图
箱线图由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。
可以帮我们分析出数据的差异性、离散程度和异常值等。
Matplotlib
Seaborn
七、热力图
力图,英文叫 heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。
通过 seaborn 的 heatmap 函数,我们可以观察到不同年份,不同月份的乘客数量变化情况,其中颜色越浅的代表乘客数量越多
八、散点图
散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。
Matplotlib
Seaborn
九、蜘蛛图
蜘蛛图是一种显示一对多关系的方法,使一个变量相对于另一个变量的显着性是清晰可见
十、二元变量分布
二元变量分布可以看两个变量之间的关系
十一、面积图
面积图又称区域图,强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。
堆积面积图还可以显示部分与整体的关系。折线图和面积图都可以用来帮助我们对趋势进行分析,当数据集有合计关系或者你想要展示局部与整体关系的时候,使用面积图为更好的选择。
十二、六边形图
六边形图将空间中的点聚合成六边形,然后根据六边形内部的值为这些六边形上色。
原文至:https://www.py.cn/toutiao/16894.html