单元测试(Unit Testing)
为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。
大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。
TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。
比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,“-”))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)
运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:position] + insert+string[position:]。(如果我们编写的是 return string[:position] + insert,之后复制 string [:position]并将其粘贴在末尾以便减少一些输入操作,那么doctest会立即提示错误。)
Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最着名的两个是nose (code.google.com/p/python-nose)与py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试严重关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。
创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:
if __name__== "__main__":
main()
这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在最后给出结果摘要。
另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Java的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。
如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为独立的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。
unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,最后删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。
典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建操作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理操作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、集合或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。
在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、集合与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于集合,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。
结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。
创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:
if name == "__main__":
unittest.main()
这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。
如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test*()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。
我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。
def setUp(self):
self.original_list = list(range(10))
我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 最后我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台差别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。
性能剖析(Profiling)
如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 最好的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。
在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。第一,在需要只读序列时,最好使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,最后将字符串行表结合成为一个单独的字符串;第五,也是最后一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。
Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。
为了解timeit模块,我们将查看一些小实例。假定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块最后使用的代码:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
赋予timeit.Timer()构造子的第一个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入操作。
调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的第一个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法操作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。
有时监控自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyMole.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,最后一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:
1000 loops, best of 3: 1.41 msec per loop
之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。
cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块精确地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。第一个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。
这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些差别,但cProfile模块允许我们了解为什么会存在这些差别。正如timeit模块允许对代码进行计时而又不需要对其监控一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能精确地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrMole.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile术语学中,原始调用指的就是非递归的函数调用。
以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。
下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
输入help可以获取命令列表,help后面跟随命令名可以获取该命令的更多信息。比如, help stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 该工具需要依赖于wxPython GUI库。
使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。
以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。
② 如何在Python Flask框架中运行重复任务
Flask是一个使用Python编写的轻量级Web应用框架,凭借更灵活、轻便、安全且容易上手的特性,成为企业常用的Python框架之一。在完成Web前端、Linux以及MySQL相关的课程之后,专业的杭州Python学习班都会讲解Flask框架知识,以下是整理的相关知识点。
Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后触发Flask框架。开发人员基于Flask框架提供的功能对请求进行相应的处理,并返回给用户,如果要返回给用户复杂的内容时,需要借助jinja2模板来实现对模板的处理,即:将模板和数据进行渲染,将渲染后的字符串返回给用户浏览器。
默认情况下,Flask不包含数据库抽象层、表单验证,或是其它任何已有多种库可以胜任的功能。然而,Flask支持用扩展来给应用添加这些功能,如同是Flask本身实现的一样。众多的扩展提供了数据库集成、表单验证、上传处理、各种各样的开放认证技术等功能。
Flask框架的特点:
1)Flask自由、灵活,可扩展性强,第三方库的选择面广,开发时可以结合自己最喜欢用的轮子,也能结合最流行最强大的Python库;
2)入门简单,即便没有多少web开发经验,也能很快做出网站;
3)非常适用于小型网站;
4)非常适用于开发Web服务的API;
5)开发大型网站无压力,但代码架构需要自己设计,开发成本取决于开发者的能力和经验。
Flask框架运行解释
1.app = Flask(__name__)
创建Flask对象app,Flask类的构造函数只有一个必须指定的参数,即程序主模块或包的名字。在大脊盯多数程序中,Python的__name__变量就是所需要的值。
[email protected]('/')
web浏览器把请求发送给Web服务器,Web服务器再把请求发送给Flask程序实例。程序实例需要知道对每个URL请求运行哪些代码,所以保存了一个URL到Python函数的映射关系。处理URL和函数之间的关系的程序称为路由。悉弊在Flask程序中定义路睁野族由的最简便方式,是使用程序实例提供的app.route修饰器,把修饰的函数注册为路由。route()装饰器告诉 Flask什么样的URL 能触发我们的函数。这和Java中的注释有异曲同工之妙。修饰器是Python语言的标准特性,可以使用不同的方式修改函数的行为。惯常用法是使用修饰器把函数注册为事件的处理程序。
3.def index():函数
index()函数放在@app.route('/')后面,所以就是把index()函数注册为路由。如果部署程序的服务器域名为http://127.0.0.1:5000/,在浏览器中访问http://127.0.0.1:5000/后,会触发服务器执行index()函数。
[email protected]('/user/')
同@app.route('/'),如果部署程序的服务器域名为http://127.0.0.1:5000/,在浏览器中访问http://127.0.0.1:5000/后,会触发服务器执行下方修饰函数。
5.app.run(debug=True)
程序实例用run方法启动Flask继承Web服务器。
6.if __name__ == '__main__'
当Python解释器,读py文件,它会执行它发现的所有代码。在执行代码之前,它会定义一些变量。例如,如果这个py文件就是主程序,它会设置__name__变量为"__main__"。如果这个py被引入到别的模块,__name__会被设置为该模块的名字。
③ python web 怎么部署
学过php的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情。相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足,在了解Python的生产环境部署方式之前,先明确一些概念!很重要!
CGI:
CGI即通用网关接口(Common Gateway Interface),是外部应用程序(CGI程序)与Web服务器之间的接口标准,是在CGI程序和Web服务器之间传递信息的规程。CGI规范允许Web服务器执行外部程序,并将它们的输出发送给Web浏览器,CGI将Web的一组简单的静态超媒体文档变成一个完整的新的交互式媒体。通俗的讲CGI就像是一座桥,把网页和WEB服务器中的执行程序连接起来,它把HTML接收的指令传递给服务器的执行程序,再把服务器执行程序的结果返还给HTML页。CGI的跨平台性能极佳,几乎可以在任何操作系统上实现。
CGI方式在遇到连接请求(用户请求)先要创建cgi的子进程,激活一个CGI进程,然后处理请求,处理完后结束这个子进程。这就是fork-and-execute模式。所以用cgi方式的服务器有多少连接请求就会有多少cgi子进程,子进程反复加载是cgi性能低下的主要原因。当用户请求数量非常多时,会大量挤占系统的资源如内存,CPU时间等,造成效能低下。
CGI脚本工作流程:
浏览器通过HTML表单或超链接请求指向一个CGI应用程序的URL。
服务器执行务器收发到请求。所指定的CGI应用程序。
CGI应用程序执行所需要的操作,通常是基于浏览者输入的内容。
CGI应用程序把结果格式化为网络服务器和浏览器能够理解的文档(通常是HTML网页)。
网络服务器把结果返回到浏览器中。
python有cgi模块可支持原生cgi程序
FastCGI:
FastCGI是一个可伸缩地、高速地在HTTP server和动态脚本语言间通信的接口。多数流行的HTTP server都支持FastCGI,包括Apache、Nginx和lighttpd等,同时,FastCGI也被许多脚本语言所支持,其中就有Python。FastCGI是从CGI发展改进而来的。传统CGI接口方式的主要缺点是性能很差,因为每次HTTP服务器遇到动态程序时都需要重新启动脚本解析器来执行解析,然后结果被返回给HTTP服务器。这在处理高并发访问时,几乎是不可用的。FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不会每次都要花费时间去fork一次(这是CGI最为人诟病的fork-and-execute 模式)。CGI 就是所谓的短生存期应用程序,FastCGI 就是所谓的长生存期应用程序。由于 FastCGI 程序并不需要不断的产生新进程,可以大大降低服务器的压力并且产生较高的应用效率。它的速度效率最少要比CGI 技术提高 5 倍以上。它还支持分布式的运算, 即 FastCGI 程序可以在网站服务器以外的主机上执行并且接受来自其它网站服务器来的请求。
FastCGI是语言无关的、可伸缩架构的CGI开放扩展,其主要行为是将CGI解释器进程保持在内存中并因此获得较高的性能。众所周知,CGI解释器的反复加载是CGI性能低下的主要原因,如果CGI解释器保持在内存中并接受FastCGI进程管理器调度,则可以提供良好的性能、伸缩性、Fail-Over特性等等。FastCGI接口方式采用C/S结构,可以将HTTP服务器和脚本解析服务器分开,同时在脚本解析服务器上启动一个或者多个脚本解析守护进程。当HTTP服务器每次遇到动态程序时,可以将其直接交付给FastCGI进程来执行,然后将得到的结果返回给浏览器。这种方式可以让HTTP服务器专一地处理静态请求或者将动态脚本服务器的结果返回给客户端,这在很大程度上提高了整个应用系统的性能。
FastCGI的工作流程:
Web Server启动时载入FastCGI进程管理器(PHP-CGI或者PHP-FPM或者spawn-cgi)
FastCGI进程管理器自身初始化,启动多个CGI解释器进程(可见多个php-cgi)并等待来自Web Server的连接。
当客户端请求到达Web Server时,FastCGI进程管理器选择并连接到一个CGI解释器。Web server将CGI环境变量和标准输入发送到FastCGI子进程php-cgi。
FastCGI子进程完成处理后将标准输出和错误信息从同一连接返回Web Server。当FastCGI子进程关闭连接时,请求便告处理完成。FastCGI子进程接着等待并处理来自FastCGI进程管理器(运行在Web Server中)的下一个连接。 在CGI模式中,php-cgi在此便退出。
FastCGI 的特点:
打破传统页面处理技术。传统的页面处理技术,程序必须与 Web 服务器或 Application 服务器处于同一台服务器中。这种历史已经早N年被FastCGI技术所打破,FastCGI技术的应用程序可以被安装在服务器群中的任何一台服务器,而通过 TCP/IP 协议与 Web 服务器通讯,这样做既适合开发大型分布式 Web 群,也适合高效数据库控制。
明确的请求模式。CGI 技术没有一个明确的角色,在 FastCGI 程序中,程序被赋予明确的角色(响应器角色、认证器角色、过滤器角色)。
WSGI:
PythonWeb服务器网关接口(Python Web Server Gateway Interface,缩写为WSGI)是为Python语言定义的Web服务器和Web应用程序或框架之间的一种简单而通用的接口。自从WSGI被开发出来以后,许多其它语言中也出现了类似接口。WSGI是作为Web服务器与Web应用程序或应用框架之间的一种低级别的接口,以提升可移植Web应用开发的共同点。WSGI是基于现存的CGI标准而设计的。
WSGI区分为两个部份:一为“服务器”或“网关”,另一为“应用程序”或“应用框架”。在处理一个WSGI请求时,服务器会为应用程序提供环境上下文及一个回调函数(Callback Function)。当应用程序完成处理请求后,透过先前的回调函数,将结果回传给服务器。所谓的 WSGI 中间件同时实现了API的两方,因此可以在WSGI服务和WSGI应用之间起调解作用:从WSGI服务器的角度来说,中间件扮演应用程序,而从应用程序的角度来说,中间件扮演服务器。“中间件”组件可以执行以下功能:
重写环境变量后,根据目标URL,将请求消息路由到不同的应用对象。
允许在一个进程中同时运行多个应用程序或应用框架。
负载均衡和远程处理,通过在网络上转发请求和响应消息。
进行内容后处理,例如应用XSLT样式表。
以前,如何选择合适的Web应用程序框架成为困扰Python初学者的一个问题,这是因为,一般而言,Web应用框架的选择将限制可用的Web服务器的选择,反之亦然。那时的Python应用程序通常是为CGI,FastCGI,mod_python中的一个而设计,甚至是为特定Web服务器的自定义的API接口而设计的。WSGI没有官方的实现, 因为WSGI更像一个协议。只要遵照这些协议,WSGI应用(Application)都可以在任何服务器(Server)上运行, 反之亦然。WSGI就是Python的CGI包装,相对于Fastcgi是PHP的CGI包装。
WSGI将 web 组件分为三类: web服务器,web中间件,web应用程序, wsgi基本处理模式为 : WSGI Server -> (WSGI Middleware)* -> WSGI Application 。
uwsgi:
uwsgi协议是一个uWSGI服务器自有的协议,它用于定义传输信息的类型(type of information),每一个uwsgi packet前4byte为传输信息类型描述,它与WSGI相比是两样东西。据称其效率是fcgi的10倍。具体的协议内容请参考:the uwsgi protocol
以上四者都可以理解为协议!协议!协议!实现了这样的协议,就可以实现Web服务器与Web应用程序相关联的web服务!
uWSGI:
uWSGI项目旨在为部署分布式集群的网络应用开发一套完整的解决方案。uWSGI主要面向web及其标准服务,已经成功的应用于多种不同的语言。由于uWSGI的可扩展架构,它能够被无限制的扩展用来支持更多的平台和语言。目前,你可以使用C,C++和Objective-C来编写插件。项目名称中的“WSGI”是为了向同名的Python Web标准表示感谢,因为WSGI为该项目开发了第一个插件。uWSGI是一个Web服务器,它实现了WSGI协议、uwsgi、http等协议。uWSGI,既不用wsgi协议也不用FastCGI协议,而是自创了上文说将的uwsgi协议。
uWSGI的主要特点如下:
超快的性能。
低内存占用(实测为apache2的mod_wsgi的一半左右)。
多app管理。
详尽的日志功能(可以用来分析app性能和瓶颈)。
高度可定制(内存大小限制,服务一定次数后重启等)。
Gunicorn:
和uWSGi类似的工具,从rails的部署工具(Unicorn)移植过来的。但是它使用的协议是前文所讲的WSGI,这是python2.5时定义的官方标准(PEP 333),根红苗正,而且部署比较简单,详细的使用教程请点击这里。Gunicorn采用prefork模式,Gunicorn 服务器与各种 Web 框架兼容,只需非常简单的执行,轻量级的资源消耗,以及相当迅速。它的特点是与 Django 结合紧密,部署特别方便。 缺点也很多,不支持 HTTP 1.1,并发访问性能不高,与 uWSGI,Gevent 等有一定的性能差距。
1. Gunicorn设计
Gunicorn 是一个 master进程,spawn 出数个工作进程的 web 服务器。master 进程控制工作进程的产生与消亡,工作进程只需要接受请求并且处理。这样分离的方式使得 reload 代码非常方便,也很容易增加或减少工作进程。 工作进程这块作者给了很大的扩展余地,它可以支持不同的IO方式,如 Gevent,Sync 同步进程,Asyc 异步进程,Eventlet 等等。master 跟 worker 进程完全分离,使得 Gunicorn 实质上就是一个控制进程的服务。
2. Gunicorn源码结构
从 Application.run() 开始,首先初始化配置,从文件读取,终端读取等等方式完成 configurate。然后启动 Arbiter,Arbiter 是实质上的 master 进程的核心,它首先从配置类中读取并设置,然后初始化信号处理函数,建立 socket。然后就是开始 spawn 工作进程,根据配置的工作进程数进行 spawn。然后就进入了轮询状态,收到信号,处理信号然后继续。这里唤醒进程的方式是建立一个 PIPE,通过信号处理函数往 pipe 里 write,然后 master 从 select.select() 中唤醒。
工作进程在 spawn 后,开始初始化,然后同样对信号进行处理,并且开始轮询,处理 HTTP 请求,调用 WSGI 的应用端,得到 resopnse 返回。然后继续。
Sync 同步进程的好处在于每个 request 都是分离的,每个 request 失败都不会影响其他 request,但这样导致了性能上的瓶颈。
Tornado:
Tornado即使一款python 的开发框架,也是一个异步非阻塞的http服务器,它本身的数据产出实现没有遵从上文所说的一些通用协议,因为自身就是web服务器,所以动态请求就直接通过内部的机制,输出成用户所请求的动态内容。如果把它作为一个单独服务器,想用它来配合其他的框架如Flask来部署,则需要采用WSGI协议,Tornado内置了该协议,tornado.wsgi.WSGIContainer。
wsgiref:
Python自带的实现了WSGI协议的的wsgi server。wsgi server可以理解为一个符合wsgi规范的web server,接收request请求,封装一系列环境变量,按照wsgi规范调用注册的wsgi app,最后将response返回给客户端。Django的自带服务器就是它了。
以上都可以理解为实现!实现!实现!实现了协议的工具!
注:mod_wsgi(apache的模块)其实也是实现了wsgi协议的一个模块,现在几乎不废弃了,所以也不多说了,感兴趣的自己查一下吧。
所以如果你采用Django框架开发了应用之后,想部署到生产环境,肯定不能用Django自带的,可以用使用uwsgi协议的uWSGI服务器,也可以采用实现了WSGI协议的gunicorn或者Tornado,亦可以用FastCGI、CGI模式的Nginx、lighttpd、apache服务器。其他框架亦如此!明白了这些概念在部署的时候就可以做到心中有数,各种工具之间的搭配也就“知其然,并知其所以然”了。
在我们组的项目中有两种框架Django和Tornado,生产环境也用到了两种部署方式。uWSGI和Gunicorn:
Django项目用Nginx+uWSGI方式部署,Tornado项目用Nginx+Gunicorn方式部署:
Nginx都作为负载均衡以及静态内容转发。Tornado项目用supervisord来管理Gunicorn,用Gunicorn管理Tornado。众所周知,由于Python的GIL存在,所以Python的并发都采用多进程模式,所以我们部署的方式是一个核心两个进程。
④ Python + Flask 上下文详解
Step1:什么是上下文
上下文相当于一个容器,保存了 Flask 程序运行过程中的一毁凳些信息。
Flask 中有两种上下文,请求败余手上下文(request 和 session )和应察嫌用上下文(current_app和g)。
Step2:上下文的使用说明
Step3:上下文代码示例
⑤ 请教Python关于找到文件并引用
一、Python查找模块的路径
运行Python应用或引用Python模块,Python解释器要有一个查找的过程。可以通过设置一个环境变量PYTHONPATH为Python增加一个搜索路径,以方便查找到相关Python模块(不同的操作系统环境变量的设置稍有不同,默认以下都是WIndows环境),这与众多应用程序需要设置一个系统环境变量的道理是一样的。在命令行中可以通过以下命令设置:
C:\Users\Administrator>set PYTHONPATH=E:/Project/Python/MoleAndPackage/
进入Python环境后可以,通过Python的sys.path属性获得当前搜索路径的配置,可以看到之前我们设置的路径已经在当前搜索路径中了。
C:\Users\Administrator>pythonPython 2.7.11 (v2.7.11:6d1b6a68f775, Dec 5 2015, 20:32:19) [MSC v.1500 32 bit (Intel)] on win32Type "help", "right", "credits" or "license" for more information.>>> import sys>>> sys.path['', 'E:\\Project\\Python\\MoleAndPackage', 'C:\\Windows\\system32\\python27.zip', 'C:\\Python\\DLLs', 'C:\\Python\\lib', 'C:\\Python\\lib\\plat-win', 'C:\\Python\\lib\\lib-tk', 'C:\\Python', 'C:\\Python\\lib\\site-packages']>>>
也可以通过sys模块的append方法在Python环境中增加搜索路径。
>>> sys.path.append("E:\\Project\\Python\\MoleAndPackage2")>>> sys.path['', 'E:\\Project\\Python\\MoleAndPackage', 'C:\\Windows\\system32\\python27.zip', 'C:\\Python\\DLLs', 'C:\\Python\\lib', 'C:\\Python\\lib\\plat-win', 'C:\\Python\\lib\\lib-tk', 'C:\\Python', 'C:\\Python\\lib\\site-packages', 'E:\\Project\\Python\\MoleAndPackage2']>>>
二、Python中的模块和包
前面已经提到每个.py文件都是可以认为是一个Python模块,.py文件中可以包含类、方法、变量和常量(Python还没有严格意义上的常量,只是约定大写的变量作为常量),文件内也可以直接写所有的逻辑语句并在加载时从上之下直接执行,这与其他解释型语言是类似的。例如我们选择在文件夹MoleAndPackage中创建一个文本文件person.py文件即创建了一个简单的Python模块,其内容如下:
# -*- coding: utf-8 -*-ID = 1name = "This person"print namedef say(something):print name,'says', something
那么接下来我们就可以在Python环境中执行person.py。我们可以直接像执行一个批处理文件那样执行person.py,在cmd命令行输入:
Python E:/Project/Python/MoleAndPackage/person.py
本质上任何一个Python应用的入口模块都是这样被执行的(像C#和Java中的main函数),但是引用一个模块,就要建立运行它的上下文环境。我们先设置一个环境变量PYTHONPATH,以便Python解释器找到person.py模块,然后import person模块,即可访问其中的方法或变量。
C:\Users\Administrator>pythonPython 2.7.11 (v2.7.11:6d1b6a68f775, Dec 5 2015, 20:32:19) [MSC v.1500 32 bit (Intel)] on win32Type "help", "right", "credits" or "license" for more information.>>> import personThis person>>> person.say("hello")This person says hello>>> print person.nameThis person>>>
Python需要去某些固定的路径下去查找Python模块,上面我们设置在MoleAndPackage中查找。但是这些路径下也是有目录层次的,Python是如何查找子目录中的模块呢?特别是引用第三方包时,我们也需要知道一定的层次关系。实际上,Python通过目录和文件构建包结构,并且包是层层嵌套的,和目录层层嵌套是一样的,这样就构成了包内的访问路径(或者命名空间,也可以说Python应用的命名空间与其目录和文件结构是对应了,似乎缺少了一些灵活,但也更简单)。例如我们在MoleAndPackage文件夹下,创建一个文件夹animal,里面创建一个文本文件pet.py,其内容如下:
# -*- coding: utf-8 -*-ID = 2name = "This pet"print namedef run(somewhere):print name,'runs', somewhere
那么如何引用pet.py这个模块呢?按照Python的约定,需要在animal文件夹中创建名为__init__.py的空文本文件,以标识animal文件夹是一个包。倘若animal文件夹内还有文件夹作为包,也必须包含__init__.py文件。这样就层层标识了访问的路径。
>>> import animal.petThis pet>>> print animal.pet.nameThis pet>>> animal.pet.run("everywhere")This pet runs everywhere>>>
或者使用from关键字直接导入模块内的属性或方法:
>>> from animal.pet import name,run>>> print nameThis pet>>> run("everywhere")This pet runs everywhere>>>
三、Python模块间引用
简答来说,只要Python模块在其执行环境配置的搜索路径中,并且其所在位置是包结构的一部分,那么我们就可以引用该模块。上文已经提供了模块引用的基本示例。只不过模块间引用时import语句是写在模块文件中,我们修改person.py模块的代码。
1、from、import和as
# -*- coding: utf-8 -*-ID = 1name = "This person"print namedef say(something):print name,'says', somethingfrom animal.pet import name as pet_name, run as pet_rundef have():print name,'has', pet_name
import语句可以写在文档中的任何位置,甚至if语句中,以便更好的控制模块引用。还可以通过as语句,使用另一个变量名进行引用,以避免变量名冲突。>>> import personThis personThis pet>>> print person.nameThis person>>> print person.pet_nameThis pet>>> person.have()This person has This pet>>>
⑥ python flask 怎么组织程序
1.初始化
所有的flask程序都必须创建一个程序实例
web服务器使用wsgi接口协议,把接收客户端的请求都转发给这个程序实例来进行处理。这个程序实例就是flask对象
from flask import Flask
app = Flask(__name__)
#__name__决定程序的根目录,以便以后能找到相对于程序根目录的资源文件位置
2.路由和视图函数
程序实例需要知道接收请求后,需要知道url请求应该运行哪些代码。所以保存了一个url和python函数的映射关系;这个映射关系就叫做路由
flask程序中路由的写法:
2.1#使用app.route装饰器,把修饰的函数注册为路由。例如
@app.route('/')def index(): return "<h1>Hello World</h1>"
#函数的名字不是必须写index的,只是和装饰器关联的时候写的函数名而已
#把index函数注册为程序根路径的处理程序。函数的返回值称为响应,是客户端接收的内容。
像index这样的函数称为试图函数,试图函数返回的响应可以是包含html的简单字符串,也可以是复杂的东西
2.2#可变url部分映射,使用特定的装饰器语法就可以
@app.route('/user/<name>')def user(name): return "<h1>hello %s</h1>"%(name)
装饰器中的<name>指定可变内容为name,name对user(name)函数中的传递参数,这2个部分内容必须一致
调用试图函数时候,flask会自动的将动态部分作为参数传入参数,这个函数中,参数用于生成个人的欢迎信息
#备注:路由中的动态部分默认使用字符串类型,可以使用int,float,path来定义;例如<int:id>;path类型也是字符串,但不把斜线视作分隔符,而将其当做动态片段的一部分
3.启动服务器
调用程序实例app的run方法启动flask集成开发的web服务器
if __name__ == "__main__":
app.run(debug=True)
debug=True代表的是调试模式,这个flask自带的run方法开启的服务器不适合在生产中使用,此处只用来测试
4.一个完整的Flask程序
啥也不说,先上例子hello.py
⑦ python上下文提取时间
是一种非常有用的技术,它可以帮助我们从一系列文本中提取出有用的信息。它有助于我们节省大量的时间和精力,而不是用人工方式提取所需要的信息。它的主要原理是,分析文本的语法或语义内容,以获取意义,从而提取有用的信枣判宏息。
通常可以分为数据抽取、信息抽取和知识抽取三冲猛个步骤。在数据抽取中,Python程序会凳册根据提供的文本格式进行解析,以提取相关的数据。在信息抽取中,Python程序会根据语义规则从文本中提取出有用的信息,从而得到更有价值的内容。最后,在知识抽取中,Python程序会使用机器学习技术,从文本中提取出更多的有用信息,为机器人提供更加准确的知识。
的优势在于,它可以根据文本内容自动提取出有用的信息,从而为人们提供有价值的内容。它可以有效地提升文本分析的效率,节省大量的时间和精力。此外,还可以为机器人提供更准确的知识,帮助它们能够更好地理解人类的语言和文本。
⑧ 用python实现 多音字程序 判断某字上下文与所给定的字符是否匹配,再根据这个字的上下文输出正确读音。
list1=[.....] 财等字绝李哪
list2=[.....] 计等字
n=string.find('会')
if string[n-1] in list1 or string[n+1] in list2:printer('kuai')
else:print('hui')
只考虑扰滚了简并码单的情况
⑨ python保存文件的时候总是显示未响应怎么办,急!
文件被占用。
可能是你的程序打开了这个文件没有关闭,然后再次执行就会产生这样的问题。
解决办法是使用上下文。上下文会自动关闭打开的文件,无论是主动结束还是因为出错而结束。
with open('a.txt', 'r') as f:
....pass
这样,a.txt在执行完后总是会关闭的,无论是正确执行完还是因为出错而结束,或者强制中断执行都一样。
上下文也可以同时打开多个文件:
with open(...) as f1,open(...) as f2:
....pass