导航:首页 > 编程语言 > python应用上下文

python应用上下文

发布时间:2023-04-11 22:59:23

① 后端编程python3-调试、测试和性能剖析(下)

单元测试(Unit Testing)

为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。

大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。

TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。

比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:

def insert_at(string, position, insert):

"""Returns a of string with insert inserted at the position

>>> string = "ABCDE"

>>> result =[]

>>> for i in range(-2, len(string) + 2):

... result.append(insert_at(string, i,“-”))

>>> result[:5]

['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']

>>> result[5:]

['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']

"""

return string

对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)

运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:position] + insert+string[position:]。(如果我们编写的是 return string[:position] + insert,之后复制 string [:position]并将其粘贴在末尾以便减少一些输入操作,那么doctest会立即提示错误。)

Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最着名的两个是nose (code.google.com/p/python-nose)与py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试严重关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。

创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:

if __name__ =="__main__":

import doctest

doctest.testmod()

在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:

if __name__== "__main__":

main()

这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在最后给出结果摘要。

另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Java的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):

import doctest

import unittest

import blocks

suite = unittest.TestSuite()

suite.addTest(doctest.DocTestSuite(blocks))

runner = unittest.TextTestRunner()

print(runner.run(suite))

注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:

...

.............................................................................................................

Ran 3 tests in 0.244s

OK

每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。

如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为独立的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。

unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,最后删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。

典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建操作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理操作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。

unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、集合或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。

在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、集合与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于集合,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。

结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。

创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:

if name == "__main__":

unittest.main()

这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。

如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:

import unittest

import test_Atomic

suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)

runner = unittest.TextTestRunner()

pnnt(runner.run(suite))

这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test*()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。

我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。

def setUp(self):

self.original_list = list(range(10))

我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。

def test_list_succeed(self):

items = self.original_list[:]

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4]= -782

atomic.insert(0, -9)

self.assertEqual(items,

[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])

def test_list_fail(self):

items = self.original_list[:]

with self.assertRaises(AttributeError):

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4] = -782

atomic.poop() # Typo

self.assertListEqual(items, self.original_list)

这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 最后我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。

正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台差别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。

性能剖析(Profiling)

如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 最好的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。

在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。第一,在需要只读序列时,最好使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,最后将字符串行表结合成为一个单独的字符串;第五,也是最后一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。

Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。

为了解timeit模块,我们将查看一些小实例。假定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块最后使用的代码:

if __name__ == "__main__":

repeats = 1000

for function in ("function_a", "function_b", "function_c"):

t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))

sec = t.timeit(repeats) / repeats

print("{function}() {sec:.6f} sec".format(**locals()))

赋予timeit.Timer()构造子的第一个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入操作。

调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的第一个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法操作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。

function_a() 0.001618 sec

function_b() 0.012786 sec

function_c() 0.003248 sec

在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。

有时监控自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyMole.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,最后一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:

1000 loops, best of 3: 1.41 msec per loop

之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。

cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块精确地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:

if __name__ == "__main__":

for function in ("function_a", "function_b", "function_c"):

cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))

我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):

1003 function calls in 1.661 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.003 0.003 1.661 1.661 :1 ( )

1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)

1 0.000 0.000 1.661 1.661 {built-in method exec}

5132003 function calls in 22.700 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.487 0.487 22.700 22.700 : 1 ( )

1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)

5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )

1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}

1 0.000 0.000 22.700 22.700 {built-in method exec}

1000 0.001 0.000 0.001 0.000 {built-in method len}

1000 15.149 0.015 22.196 0.022 {built-in method sorted}

5129003 function calls in 12.987 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.205 0.205 12.987 12.987 :l ( )

1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)

5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )

1 0.000 0.000 12.987 12.987 {built-in method exec}

ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。第一个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。

这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些差别,但cProfile模块允许我们了解为什么会存在这些差别。正如timeit模块允许对代码进行计时而又不需要对其监控一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能精确地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrMole.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:

10272458 function calls (10272457 primitive calls) in 37.718 CPU secs

ncalls tottime percall cumtime percall filename:lineno(function)

10.000 0.000 37.718 37.718 :1 ( )

10.719 0.719 37.717 37.717 :12( )

1000 1.569 0.002 1.569 0.002 :20(function_a)

1000 0.011 0.000 22.560 0.023 :27(function_b)

5128000 7.078 0.000 7.078 0.000 :28( )

1000 6.510 0.007 12.825 0.013 :35(function_c)

5128000 6.316 0.000 6.316 0.000 :36( )

在cProfile术语学中,原始调用指的就是非递归的函数调用。

以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。

下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:

$ python3 -m cProfile -o profile.dat MyMole.py

$ python3 -m pstats

Welcome to the profile statistics browser.

% read profile.dat

profile.dat% callers function_b

Random listing order was used

List reced from 44 to 1 e to restriction

Function was called by...

ncalls tottime cumtime

:27(function_b) <- 1000 0.011 22.251 :12( )

profile.dat% callees function_b

Random listing order was used

List reced from 44 to 1 e to restriction

Function called...

ncalls tottime cumtime

:27(function_b)->

1000 0.005 0.005 built-in method bisectJeft

1000 0.001 0.001 built-in method len

1000 1 5.297 22.234 built-in method sorted

profile.dat% quit

输入help可以获取命令列表,help后面跟随命令名可以获取该命令的更多信息。比如, help stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 该工具需要依赖于wxPython GUI库。

使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。

以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。

② 如何在Python Flask框架中运行重复任务

Flask是一个使用Python编写的轻量级Web应用框架,凭借更灵活、轻便、安全且容易上手的特性,成为企业常用的Python框架之一。在完成Web前端、Linux以及MySQL相关的课程之后,专业的杭州Python学习班都会讲解Flask框架知识,以下是整理的相关知识点。

Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理,然后触发Flask框架。开发人员基于Flask框架提供的功能对请求进行相应的处理,并返回给用户,如果要返回给用户复杂的内容时,需要借助jinja2模板来实现对模板的处理,即:将模板和数据进行渲染,将渲染后的字符串返回给用户浏览器。

默认情况下,Flask不包含数据库抽象层、表单验证,或是其它任何已有多种库可以胜任的功能。然而,Flask支持用扩展来给应用添加这些功能,如同是Flask本身实现的一样。众多的扩展提供了数据库集成、表单验证、上传处理、各种各样的开放认证技术等功能。

Flask框架的特点:
1)Flask自由、灵活,可扩展性强,第三方库的选择面广,开发时可以结合自己最喜欢用的轮子,也能结合最流行最强大的Python库;
2)入门简单,即便没有多少web开发经验,也能很快做出网站;
3)非常适用于小型网站;
4)非常适用于开发Web服务的API;
5)开发大型网站无压力,但代码架构需要自己设计,开发成本取决于开发者的能力和经验。

Flask框架运行解释
1.app = Flask(__name__)
创建Flask对象app,Flask类的构造函数只有一个必须指定的参数,即程序主模块或包的名字。在大脊盯多数程序中,Python的__name__变量就是所需要的值。

[email protected]('/')
web浏览器把请求发送给Web服务器,Web服务器再把请求发送给Flask程序实例。程序实例需要知道对每个URL请求运行哪些代码,所以保存了一个URL到Python函数的映射关系。处理URL和函数之间的关系的程序称为路由。悉弊在Flask程序中定义路睁野族由的最简便方式,是使用程序实例提供的app.route修饰器,把修饰的函数注册为路由。route()装饰器告诉 Flask什么样的URL 能触发我们的函数。这和Java中的注释有异曲同工之妙。修饰器是Python语言的标准特性,可以使用不同的方式修改函数的行为。惯常用法是使用修饰器把函数注册为事件的处理程序。

3.def index():函数
index()函数放在@app.route('/')后面,所以就是把index()函数注册为路由。如果部署程序的服务器域名为http://127.0.0.1:5000/,在浏览器中访问http://127.0.0.1:5000/后,会触发服务器执行index()函数。

[email protected]('/user/')
同@app.route('/'),如果部署程序的服务器域名为http://127.0.0.1:5000/,在浏览器中访问http://127.0.0.1:5000/后,会触发服务器执行下方修饰函数。

5.app.run(debug=True)
程序实例用run方法启动Flask继承Web服务器。

6.if __name__ == '__main__'
当Python解释器,读py文件,它会执行它发现的所有代码。在执行代码之前,它会定义一些变量。例如,如果这个py文件就是主程序,它会设置__name__变量为"__main__"。如果这个py被引入到别的模块,__name__会被设置为该模块的名字。

③ python web 怎么部署

学过php的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情。相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足,在了解Python的生产环境部署方式之前,先明确一些概念!很重要!

CGI:

CGI即通用网关接口(Common Gateway Interface),是外部应用程序(CGI程序)与Web服务器之间的接口标准,是在CGI程序和Web服务器之间传递信息的规程。CGI规范允许Web服务器执行外部程序,并将它们的输出发送给Web浏览器,CGI将Web的一组简单的静态超媒体文档变成一个完整的新的交互式媒体。通俗的讲CGI就像是一座桥,把网页和WEB服务器中的执行程序连接起来,它把HTML接收的指令传递给服务器的执行程序,再把服务器执行程序的结果返还给HTML页。CGI的跨平台性能极佳,几乎可以在任何操作系统上实现。

CGI方式在遇到连接请求(用户请求)先要创建cgi的子进程,激活一个CGI进程,然后处理请求,处理完后结束这个子进程。这就是fork-and-execute模式。所以用cgi方式的服务器有多少连接请求就会有多少cgi子进程,子进程反复加载是cgi性能低下的主要原因。当用户请求数量非常多时,会大量挤占系统的资源如内存,CPU时间等,造成效能低下。

CGI脚本工作流程:

④ Python + Flask 上下文详解

Step1:什么是上下文

上下文相当于一个容器,保存了 Flask 程序运行过程中的一毁凳些信息。

Flask 中有两种上下文,请求败余手上下文(request 和 session )和应察嫌用上下文(current_app和g)。


Step2:上下文的使用说明


Step3:上下文代码示例

⑤ 请教Python关于找到文件并引用

一、Python查找模块的路径

运行Python应用或引用Python模块,Python解释器要有一个查找的过程。可以通过设置一个环境变量PYTHONPATH为Python增加一个搜索路径,以方便查找到相关Python模块(不同的操作系统环境变量的设置稍有不同,默认以下都是WIndows环境),这与众多应用程序需要设置一个系统环境变量的道理是一样的。在命令行中可以通过以下命令设置:

C:\Users\Administrator>set PYTHONPATH=E:/Project/Python/MoleAndPackage/

进入Python环境后可以,通过Python的sys.path属性获得当前搜索路径的配置,可以看到之前我们设置的路径已经在当前搜索路径中了。
C:\Users\Administrator>pythonPython 2.7.11 (v2.7.11:6d1b6a68f775, Dec 5 2015, 20:32:19) [MSC v.1500 32 bit (Intel)] on win32Type "help", "right", "credits" or "license" for more information.>>> import sys>>> sys.path['', 'E:\\Project\\Python\\MoleAndPackage', 'C:\\Windows\\system32\\python27.zip', 'C:\\Python\\DLLs', 'C:\\Python\\lib', 'C:\\Python\\lib\\plat-win', 'C:\\Python\\lib\\lib-tk', 'C:\\Python', 'C:\\Python\\lib\\site-packages']>>>

也可以通过sys模块的append方法在Python环境中增加搜索路径。
>>> sys.path.append("E:\\Project\\Python\\MoleAndPackage2")>>> sys.path['', 'E:\\Project\\Python\\MoleAndPackage', 'C:\\Windows\\system32\\python27.zip', 'C:\\Python\\DLLs', 'C:\\Python\\lib', 'C:\\Python\\lib\\plat-win', 'C:\\Python\\lib\\lib-tk', 'C:\\Python', 'C:\\Python\\lib\\site-packages', 'E:\\Project\\Python\\MoleAndPackage2']>>>

二、Python中的模块和包

前面已经提到每个.py文件都是可以认为是一个Python模块,.py文件中可以包含类、方法、变量和常量(Python还没有严格意义上的常量,只是约定大写的变量作为常量),文件内也可以直接写所有的逻辑语句并在加载时从上之下直接执行,这与其他解释型语言是类似的。例如我们选择在文件夹MoleAndPackage中创建一个文本文件person.py文件即创建了一个简单的Python模块,其内容如下:
# -*- coding: utf-8 -*-ID = 1name = "This person"print namedef say(something):print name,'says', something

那么接下来我们就可以在Python环境中执行person.py。我们可以直接像执行一个批处理文件那样执行person.py,在cmd命令行输入:
Python E:/Project/Python/MoleAndPackage/person.py

本质上任何一个Python应用的入口模块都是这样被执行的(像C#和Java中的main函数),但是引用一个模块,就要建立运行它的上下文环境。我们先设置一个环境变量PYTHONPATH,以便Python解释器找到person.py模块,然后import person模块,即可访问其中的方法或变量。
C:\Users\Administrator>pythonPython 2.7.11 (v2.7.11:6d1b6a68f775, Dec 5 2015, 20:32:19) [MSC v.1500 32 bit (Intel)] on win32Type "help", "right", "credits" or "license" for more information.>>> import personThis person>>> person.say("hello")This person says hello>>> print person.nameThis person>>>

Python需要去某些固定的路径下去查找Python模块,上面我们设置在MoleAndPackage中查找。但是这些路径下也是有目录层次的,Python是如何查找子目录中的模块呢?特别是引用第三方包时,我们也需要知道一定的层次关系。实际上,Python通过目录和文件构建包结构,并且包是层层嵌套的,和目录层层嵌套是一样的,这样就构成了包内的访问路径(或者命名空间,也可以说Python应用的命名空间与其目录和文件结构是对应了,似乎缺少了一些灵活,但也更简单)。例如我们在MoleAndPackage文件夹下,创建一个文件夹animal,里面创建一个文本文件pet.py,其内容如下:
# -*- coding: utf-8 -*-ID = 2name = "This pet"print namedef run(somewhere):print name,'runs', somewhere

那么如何引用pet.py这个模块呢?按照Python的约定,需要在animal文件夹中创建名为__init__.py的空文本文件,以标识animal文件夹是一个包。倘若animal文件夹内还有文件夹作为包,也必须包含__init__.py文件。这样就层层标识了访问的路径。
>>> import animal.petThis pet>>> print animal.pet.nameThis pet>>> animal.pet.run("everywhere")This pet runs everywhere>>>

或者使用from关键字直接导入模块内的属性或方法:
>>> from animal.pet import name,run>>> print nameThis pet>>> run("everywhere")This pet runs everywhere>>>

三、Python模块间引用

简答来说,只要Python模块在其执行环境配置的搜索路径中,并且其所在位置是包结构的一部分,那么我们就可以引用该模块。上文已经提供了模块引用的基本示例。只不过模块间引用时import语句是写在模块文件中,我们修改person.py模块的代码。

1、from、import和as
# -*- coding: utf-8 -*-ID = 1name = "This person"print namedef say(something):print name,'says', somethingfrom animal.pet import name as pet_name, run as pet_rundef have():print name,'has', pet_name

import语句可以写在文档中的任何位置,甚至if语句中,以便更好的控制模块引用。还可以通过as语句,使用另一个变量名进行引用,以避免变量名冲突。>>> import personThis personThis pet>>> print person.nameThis person>>> print person.pet_nameThis pet>>> person.have()This person has This pet>>>

⑥ python flask 怎么组织程序

1.初始化

所有的flask程序都必须创建一个程序实例

web服务器使用wsgi接口协议,把接收客户端的请求都转发给这个程序实例来进行处理。这个程序实例就是flask对象

from flask import Flask
app = Flask(__name__)
#__name__决定程序的根目录,以便以后能找到相对于程序根目录的资源文件位置


2.路由和视图函数

程序实例需要知道接收请求后,需要知道url请求应该运行哪些代码。所以保存了一个url和python函数的映射关系;这个映射关系就叫做路由

flask程序中路由的写法:

2.1#使用app.route装饰器,把修饰的函数注册为路由。例如

@app.route('/')def index(): return "<h1>Hello World</h1>"

#函数的名字不是必须写index的,只是和装饰器关联的时候写的函数名而已

#把index函数注册为程序根路径的处理程序。函数的返回值称为响应,是客户端接收的内容。

像index这样的函数称为试图函数,试图函数返回的响应可以是包含html的简单字符串,也可以是复杂的东西

2.2#可变url部分映射,使用特定的装饰器语法就可以

@app.route('/user/<name>')def user(name): return "<h1>hello %s</h1>"%(name)

装饰器中的<name>指定可变内容为name,name对user(name)函数中的传递参数,这2个部分内容必须一致

调用试图函数时候,flask会自动的将动态部分作为参数传入参数,这个函数中,参数用于生成个人的欢迎信息

#备注:路由中的动态部分默认使用字符串类型,可以使用int,float,path来定义;例如<int:id>;path类型也是字符串,但不把斜线视作分隔符,而将其当做动态片段的一部分

3.启动服务器

调用程序实例app的run方法启动flask集成开发的web服务器

if __name__ == "__main__":
app.run(debug=True)

debug=True代表的是调试模式,这个flask自带的run方法开启的服务器不适合在生产中使用,此处只用来测试

4.一个完整的Flask程序

啥也不说,先上例子hello.py

⑦ python上下文提取时间

是一种非常有用的技术,它可以帮助我们从一系列文本中提取出有用的信息。它有助于我们节省大量的时间和精力,而不是用人工方式提取所需要的信息。它的主要原理是,分析文本的语法或语义内容,以获取意义,从而提取有用的信枣判宏息。

通常可以分为数据抽取、信息抽取和知识抽取三冲猛个步骤。在数据抽取中,Python程序会凳册根据提供的文本格式进行解析,以提取相关的数据。在信息抽取中,Python程序会根据语义规则从文本中提取出有用的信息,从而得到更有价值的内容。最后,在知识抽取中,Python程序会使用机器学习技术,从文本中提取出更多的有用信息,为机器人提供更加准确的知识。

的优势在于,它可以根据文本内容自动提取出有用的信息,从而为人们提供有价值的内容。它可以有效地提升文本分析的效率,节省大量的时间和精力。此外,还可以为机器人提供更准确的知识,帮助它们能够更好地理解人类的语言和文本。

⑧ 用python实现 多音字程序 判断某字上下文与所给定的字符是否匹配,再根据这个字的上下文输出正确读音。

list1=[.....] 财等字绝李哪
list2=[.....] 计等字
n=string.find('会')
if string[n-1] in list1 or string[n+1] in list2:printer('kuai')
else:print('hui')
只考虑扰滚了简并码单的情况

⑨ python保存文件的时候总是显示未响应怎么办,急!

文件被占用。
可能是你的程序打开了这个文件没有关闭,然后再次执行就会产生这样的问题。
解决办法是使用上下文。上下文会自动关闭打开的文件,无论是主动结束还是因为出错而结束。
with open('a.txt', 'r') as f:
....pass
这样,a.txt在执行完后总是会关闭的,无论是正确执行完还是因为出错而结束,或者强制中断执行都一样。
上下文也可以同时打开多个文件:
with open(...) as f1,open(...) as f2:
....pass

阅读全文

与python应用上下文相关的资料

热点内容
iospdf教程下载 浏览:328
加密货币换手率300表示什么 浏览:725
手机wps新建文件夹存照片 浏览:395
单片机rgbled 浏览:959
怎么通过文件加密后发给微信好友 浏览:90
用虚拟机编程 浏览:821
公司代理服务器有什么要求 浏览:244
服务器和数据库怎么联系 浏览:633
hbase配置压缩 浏览:918
java000 浏览:477
华为手机文件夹的字体颜色 浏览:635
安卓怎么换相机 浏览:933
华为相片文件夹怎么删除重复照片 浏览:316
plc编程视频教程大全 浏览:938
直播用哪个app播放背景音乐 浏览:852
点歌机系统app在哪里下载 浏览:609
javadate类型转换string 浏览:694
RPG游戏解压后乱码 浏览:988
无线通信的几个密钥算法 浏览:647
王者荣耀app数据修复在哪里 浏览:429