java和python都是计算机编程语言,但是各有各的特点。这里简单列举一下。
设计初衷是“写一次代码,在哪里都可以用”,可以完成任何规模的任务,所以它也是很多公司在做商业级项目的时候的普遍选择。
设计初衷是“让代码读起来更轻松”,并且让程序员们比起用其他语言,可以写更少的代码,事半功倍。
北大青鸟中博软件学院java课堂实拍
如果你只是编程爱好者,或者把编程语言作为一个工作中的应用工具,数袭败Python是个不错的选择。薯颤如果你想在程序员的道路上稳步发展,建议先学习Java,再学python,C++,JavaScript,php等其他语言,会事半功倍。
一名优秀的程序员,绝不会只靠一门语言走到黑,通吃它们就完了!兼容并蓄,触类旁通,这才是一个成熟IT从业者该有的心态!
你可以禅族考察对比一下南京课工场、北大青鸟、中博软件学院等开设有java和python专业的学校。祝你学有所成!望采纳!
⑵ 如何用 Python 实现一个图数据库(Graph Database)
本文章是 重写 500 Lines or Less 系列的其中一篇,目标是重写 500 Lines or Less 系列的原有项目:Dagoba: an in-memory graph database。
Dagoba 是作者设计用来展示如何从零开始自己实现一个图数据库( Graph Database )。该名字似乎来源于作者喜欢的一个乐队,另一个原因是它的前缀 DAG 也正好是有向无环图 ( Directed Acyclic Graph ) 的缩写。本文也沿用了该名称。
图是一种常见的数据结构,它将信息描述为若干独立的节点( vertex ,为了和下文的边更加对称,本文中称为 node ),以及把节点关联起来的边( edge )。我们熟悉的链表以及多种树结构可以看作是符合特定规则的图。图在路径选择、推荐算法以及神经网络等方面都是重要的核心数据结构。
既然图的用途如此广泛,一个重要的问题就是如何存储它。如果在传统的关系数据库中存储图,很自然的做法就是为节点和边各自创建一张表,并用外键把它们关联起来。这样的话,要查找某人所有的子女,就可以写下类似下面的查询:
还好,不算太复杂。但是如果要查找孙辈呢?那恐怕就要使用子查询或者 CTE(Common Table Expression) 等特殊构造了。再往下想,曾孙辈又该怎么查询?孙媳妇呢?
这样我们会意识到,SQL 作为查询语言,它只是对二维数据表这种结构而设计的,用它去查询图的话非常笨拙,很快会变得极其复杂,也难以扩展。针对图而言,我们希望有一种更为自然和直观的查询语法,类似这样:
为了高效地存储和查询图这种数据结构,图数据库( Graph Database )应运而生。因为和传统的关系型数据库存在极大的差异,所以它属于新型数据库也就是 NoSql 的一个分支(其他分支包括文档数据库、列数据库等)。图数据库的主要代表包括 Neo4J 等。本文介绍的 Dagoba 则是具备图数据库核心功能、主要用于教学和演示的一个简单的图数据库。
原文代码是使用 JavaScript 编写的,在定义调用接口时大量使用了原型( prototype )这种特有的语言构造。对于其他主流语言的用户来说,原型的用法多少显得有些别扭和不自然。
考虑到本系列其他数据库示例大多是用 Python 实现的,本文也按照传统,用 Python 重写了原文的代码。同样延续之前的惯例,为了让读者更好地理解程序是如何逐步完善的,我们用迭代式的方法完成程序的各个组成部分。
原文在 500lines 系列的 Github 仓库中只包含了实现代码,并未包含测试。按照代码注释说明,测试程序位于作者的另一个代码库中,不过和 500lines 版本的实现似乎略有不同。
本文实现的代码参考了原作者的测试内容,但跳过了北欧神话这个例子——我承认确实不熟悉这些神祇之间的亲缘关系,相信中文背景的读者们多数也未必了解,虽然作者很喜欢这个例子,想了想还是不要徒增困惑吧。因此本文在编写测试用例时只参考了原文关于家族亲属的例子,放弃了神话相关的部分,尽管会减少一些趣味性,相信对于入门级的代码来说这样也够用了。
本文实现程序位于代码库的 dagoba 目录下。按照本系列程序的同意规则,要想直接执行各个已完成的步骤,读者可以在根目录下的 main.py 找到相应的代码位置,取消注释并运行即可。
本程序的所有步骤只需要 Python3 ,测试则使用内置的 unittest , 不需要额外的第三方库。原则上 Python3.6 以上版本应该都可运行,但我只在 Python3.8.3 环境下完整测试过。
本文实现的程序从最简单的案例开始,通过每个步骤逐步扩展,最终形成一个完整的程序。这些步骤包括:
接下来依次介绍各个步骤。
回想一下,图数据库就是一些点( node )和边( edge )的集合。现在我们要做出的一个重大决策是如何对节点/边进行建模。对于边来说,必须指定它的关联关系,也就是从哪个节点指向哪个节点。大多数情况下边是有方向的——父子关系不指明方向可是要乱套的!
考虑到扩展性及通用性问题,我们可以把数据保存为字典( dict ),这样可以方便地添加用户需要的任何数据。某些数据是为数据库内部管理而保留的,为了明确区分,可以这样约定:以下划线开头的特殊字段由数据库内部维护,类似于私有成员,用户不应该自己去修改它们。这也是 Python 社区普遍遵循的约定。
此外,节点和边存在互相引用的关系。目前我们知道边会引用到两端的节点,后面还会看到,为了提高效率,节点也会引用到边。如果仅仅在内存中维护它们的关系,那么使用指针访问是很直观的,但数据库必须考虑到序列化到磁盘的问题,这时指针就不再好用了。
为此,最好按照数据库的一般要求,为每个节点维护一个主键( _id ),用主键来描述它们之间的关联关系。
我们第一步要把数据库的模型建立起来。为了测试目的,我们使用一个最简单的数据库模型,它只包含两个节点和一条边,如下所示:
按照 TDD 的原则,首先编写测试:
与原文一样,我们把数据库管理接口命名为 Dagoba 。目前,能够想到的最简单的测试是确认节点和边是否已经添加到数据库中:
assert_item 是一个辅助方法,用于检查字典是否包含预期的字段。相信大家都能想到该如何实现,这里就不再列出了,读者可参考 Github 上的完整源码。
现在,测试是失败的。用最简单的办法实现数据库:
需要注意的是,不管添加节点还是查询,程序都使用了拷贝后的数据副本,而不是直接使用原始数据。为什么要这样做?因为字典是可变的,用户可以在任何时候修改其中的内容,如果数据库不知道数据已经变化,就很容易发生难以追踪的一致性问题,最糟糕的情况下会使得数据内容彻底混乱。
拷贝数据可以避免上述问题,代价则是需要占用更多内存和处理时间。对于数据库来说,通常查询次数要远远多于修改,所以这个代价是可以接受的。
现在测试应该正常通过了。为了让它更加完善,我们可以再测试一些边缘情况,看看数据库能否正确处理异常数据,比如:
例如,如果用户尝试添加重复主键,我们预期应抛出 ValueError 异常。因此编写测试如下:
为了满足以上测试,代码需要稍作修改。特别是按照 id 查找主键是个常用操作,通过遍历的方法效率太低了,最好是能够通过主键直接访问。因此在数据库中再增加一个字典:
完整代码请参考 Github 仓库。
在上个步骤,我们在初始化数据库时为节点明确指定了主键。按照数据库设计的一般原则,主键最好是不具有业务含义的代理主键( Surrogate key ),用户不应该关心它具体的值是什么,因此让数据库去管理主键通常是更为合理的。当然,在部分场景下——比如导入外部数据——明确指定主键仍然是有用的。
为了同时支持这些要求,我们这样约定:字段 _id 表示节点的主键,如果用户指定了该字段,则使用用户设置的值(当然,用户有责任保证它们不会重复);否则,由数据库自动为它分配一个主键。
如果主键是数据库生成的,事先无法预知它的值是什么,而边( edge )必须指定它所指向的节点,因此必须在主键生成后才能添加。由于这个原因,在动态生成主键的情况下,数据库的初始化会略微复杂一些。还是先写一个测试:
为支持此功能,我们在数据库中添加一个内部字段 _next_id 用于生成主键,并让 add_node 方法返回新生成的主键:
接下来,再确认一下边是否可以正常访问:
运行测试,一切正常。这个步骤很轻松地完成了,不过两个测试( DbModelTest 和 PrimaryKeyTest )出现了一些重复代码,比如 get_item 。我们可以把这些公用代码提取出来。由于 get_item 内部调用了 TestCase.assertXXX 等方法,看起来应该使用继承,但从 TestCase 派生基类容易引起一些潜在的问题,所以我转而使用另一个技巧 Mixin :
实现数据库模型之后,接下来就要考虑如何查询它了。
在设计查询时要考虑几个问题。对于图的访问来说,几乎总是由某个节点(或符合条件的某一类节点)开始,从与它相邻的边跳转到其他节点,依次类推。所以链式调用对查询来说是一种很自然的风格。举例来说,要知道 Tom 的孙子养了几只猫,可以使用类似这样的查询:
可以想象,以上每个方法都应该返回符合条件的节点集合。这种实现是很直观的,不过存在一个潜在的问题:很多时候用户只需要一小部分结果,如果它总是不计代价地给我们一个巨大的集合,会造成极大的浪费。比如以下查询:
为了避免不必要的浪费,我们需要另外一种机制,也就是通常所称的“懒式查询”或“延迟查询”。它的基本思想是,当我们调用查询方法时,它只是把查询条件记录下来,而并不立即返回结果,直到明确调用某些方法时才真正去查询数据库。
如果读者比较熟悉流行的 Python ORM,比如 SqlAlchemy 或者 Django ORM 的话,会知道它们几乎都是懒式查询的,要调用 list(result) 或者 result[0:10] 这样的方法才能得到具体的查询结果。
在 Dagoba 中把触发查询的方法定义为 run 。也就是说,以下查询执行到 run 时才真正去查找数据:
和懒式查询( Lazy Query )相对应的,直接返回结果的方法一般称作主动查询( Eager Query )。主动查询和懒式查询的内在查找逻辑基本上是相同的,区别只在于触发机制不同。由于主动查询实现起来更加简单,出错也更容易排查,因此我们先从主动查询开始实现。
还是从测试开始。前面测试所用的简单数据库数据太少,难以满足查询要求,所以这一步先来创建一个更复杂的数据模型:
此关系的复杂之处之一在于反向关联:如果 A 是 B 的哥哥,那么 B 就是 A 的弟弟/妹妹,为了查询到他们彼此之间的关系,正向关联和反向关联都需要存在,因此在初始化数据库时需要定义的边数量会很多。
当然,父子之间也存在反向关联的问题,为了让问题稍微简化一些,我们目前只需要向下(子孙辈)查找,可以稍微减少一些关联数量。
因此,我们定义数据模型如下。为了减少重复工作,我们通过 _backward 字段定义反向关联,而数据库内部为了查询方便,需要把它维护成两条边:
然后,测试一个最简单的查询,比如查找某人的所有孙辈:
这里 outcome/income 分别表示从某个节点出发、或到达它的节点集合。在原作者的代码中把上述方法称为 out/in 。当然这样看起来更加简洁,可惜的是 in 在 Python 中是个关键字,无法作为函数名。我也考虑过加个下划线比如 out_.in_ 这种形式,但看起来也有点怪异,权衡之后还是使用了稍微啰嗦一点的名称。
现在我们可以开始定义查询接口了。在前面已经说过,我们计划分别实现两种查询,包括主动查询( Eager Query )以及延迟查询( Lazy Query )。
它们的内在查询逻辑是相通的,看起来似乎可以使用继承。不过遵循 YAGNI 原则,目前先不这样做,而是只定义两个新类,在满足测试的基础上不断扩展。以后我们会看到,与继承相比,把共同的逻辑放到数据库本身其实是更为合理的。
接下来实现访问节点的方法。由于 EagerQuery 调用查询方法会立即返回结果,我们把结果记录在 _result 内部字段中。虽然 node 方法只返回单个结果,但考虑到其他查询方法几乎都是返回集合,为统一起见,让它也返回集合,这样可以避免同时支持集合与单结果的分支处理,让代码更加简洁、不容易出错。此外,如果查询对象不存在的话,我们只返回空集合,并不视为一个错误。
查询输入/输出节点的方法实现类似这样:
查找节点的核心逻辑在数据库本身定义:
以上使用了内部定义的一些辅助查询方法。用类似的逻辑再定义 income ,它们的实现都很简单,读者可以直接参考源码,此处不再赘述。
在此步骤的最后,我们再实现一个优化。当多次调用查询方法后,结果可能会返回重复的数据,很多时候这是不必要的。就像关系数据库通常支持 unique/distinct 一样,我们也希望 Dagoba 能够过滤重复的数据。
假设我们要查询某人所有孩子的祖父,显然不管有多少孩子,他们的祖父应该是同一个人。因此编写测试如下:
现在来实现 unique 。我们只要按照主键把重复数据去掉即可:
在上个步骤,初始化数据库指定了双向关联,但并未测试它们。因为我们还没有编写代码去支持它们,现在增加一个测试,它应该是失败的:
运行测试,的确失败了。我们看看要如何支持它。回想一下,当从边查找节点时,使用的是以下方法:
这里也有一个潜在的问题:调用 self.edges 意味着遍历所有边,当数据库内容较多时,这是巨大的浪费。为了提高性能,我们可以把与节点相关的边记录在节点本身,这样要查找边只要看节点本身即可。在初始化时定义出入边的集合:
在添加边时,我们要同时把它们对应的关系同时更新到节点,此外还要维护反向关联。这涉及对字典内容的部分复制,先编写一个辅助方法:
然后,将添加边的实现修改如下:
这里的代码同时添加正向关联和反向关联。有的朋友可能会注意到代码略有重复,是的,但是重复仅出现在该函数内部,本着“三则重构”的原则,暂时不去提取代码。
实现之后,前面的测试就可以正常通过了。
在这个步骤中,我们来实现延迟查询( Lazy Query )。
延迟查询的要求是,当调用查询方法时并不立即执行,而是推迟到调用特定方法,比如 run 时才执行整个查询,返回结果。
延迟查询的实现要比主动查询复杂一些。为了实现延迟查询,查询方法的实现不能直接返回结果,而是记录要执行的动作以及传入的参数,到调用 run 时再依次执行前面记录下来的内容。
如果你去看作者的实现,会发现他是用一个数据结构记录执行操作和参数,此外还有一部分逻辑用来分派对每种结构要执行的动作。这样当然是可行的,但数据处理和分派部分的实现会比较复杂,也容易出错。
本文的实现则选择了另外一种不同的方法:使用 Python 的内部函数机制,把一连串查询变换成一组函数,每个函数取上个函数的执行结果作为输入,最后一个函数的输出就是整个查询的结果。由于内部函数同时也是闭包,尽管每个查询的参数形式各不相同,但是它们都可以被闭包“捕获”而成为内部变量,所以这些内部函数可以采用统一的形式,无需再针对每种查询设计额外的数据结构,因而执行过程得到了很大程度的简化。
首先还是来编写测试。 LazyQueryTest 和 EagerQueryTest 测试用例几乎是完全相同的(是的,两种查询只在于内部实现机制不同,它们的调用接口几乎是完全一致的)。
因此我们可以把 EagerQueryTest 的测试原样不变拷贝到 LazyQueryTest 中。当然拷贝粘贴不是个好注意,对于比较冗长而固定的初始化部分,我们可以把它提取出来作为两个测试共享的公共函数。读者可参考代码中的 step04_lazy_query/tests/test_lazy_query.py 部分。
程序把查询函数的串行执行称为管道( pipeline ),用一个变量来记录它:
然后依次实现各个调用接口。每种接口的实现都是类似的:用内部函数执行真正的查询逻辑,再把这个函数添加到 pipeline 调用链中。比如 node 的实现类似下面:
其他接口的实现也与此类似。最后, run 函数负责执行所有查询,返回最终结果;
完成上述实现后执行测试,确保我们的实现是正确的。
在前面我们说过,延迟查询与主动查询相比,最大的优势是对于许多查询可以按需要访问,不需要每个步骤都返回完整结果,从而提高性能,节约查询时间。比如说,对于下面的查询:
以上查询的意思是从孙辈中找到一个符合条件的节点即可。对该查询而言,主动查询会在调用 outcome('son') 时就遍历所有节点,哪怕最后一步只需要第一个结果。而延迟查询为了提高效率,应在找到符合条件的结果后立即停止。
目前我们尚未实现 take 方法。老规矩,先添加测试:
主动查询的 take 实现比较简单,我们只要从结果中返回前 n 条记录:
延迟查询的实现要复杂一些。为了避免不必要的查找,返回结果不应该是完整的列表( list ),而应该是个按需返回的可迭代对象,我们用内置函数 next 来依次返回前 n 个结果:
写完后运行测试,确保它们是正确的。
从外部接口看,主动查询和延迟查询几乎是完全相同的,所以用单纯的数据测试很难确认后者的效率一定比前者高,用访问时间来测试也并不可靠。为了测试效率,我们引入一个节点访问次数的概念,如果延迟查询效率更高的话,那么它应该比主动查询访问节点的次数更少。
为此,编写如下测试:
我们为 Dagoba 类添加一个成员来记录总的节点访问次数,以及两个辅助方法,分别用于获取和重置访问次数:
然后浏览代码,查找修改点。增加计数主要在从边查找节点的时候,因此修改部分如下:
此外还有 income/outcome 方法,修改都很简单,这里就不再列出。
实现后再次运行测试。测试通过,表明延迟查询确实在效率上优于主动查询。
不像关系数据库的结构那样固定,图的形式可以千变万化,查询机制也必须足够灵活。从原理上讲,所有查询无非是从某个节点出发按照特定方向搜索,因此用 node/income/outcome 这三个方法几乎可以组合出任意所需的查询。
但对于复杂查询,写出的代码有时会显得较为琐碎和冗长,对于特定领域来说,往往存在更为简洁的名称,例如:母亲的兄弟可简称为舅舅。对于这些场景,如果能够类似 DSL (领域特定语言)那样允许用户根据专业要求自行扩展,从而简化查询,方便阅读,无疑会更为友好。
如果读者去看原作者的实现,会发现他是用一种特殊语法 addAlias 来定义自己想要的查询,调用方法时再进行查询以确定要执行的内容,其接口和内部实现都是相当复杂的。
而我希望有更简单的方法来实现这一点。所幸 Python 是一种高度动态的语言,允许在运行时向类中增加新的成员,因此做到这一点可能比预想的还要简单。
为了验证这一点,编写测试如下:
无需 Dagoba 的实现做任何改动,测试就可以通过了!其实我们要做的就是动态添加一个自定义的成员函数,按照 Python 对象机制的要求,成员函数的第一个成员应该是名为 self 的参数,但这里已经是在 UnitTest 的内部,为了和测试类本身的 self 相区分,新函数的参数增加了一个下划线。
此外,函数应返回其所属的对象,这是为了链式调用所要求的。我们看到,动态语言的灵活性使得添加新语法变得非常简单。
到此,一个初具规模的图数据库就形成了。
和原文相比,本文还缺少一些内容,比如如何将数据库序列化到磁盘。不过相信读者都看到了,我们的数据库内部结构基本上是简单的原生数据结构(列表+字典),因此序列化无论用 pickle 或是 JSON 之类方法都应该是相当简单的。有兴趣的读者可以自行完成它们。
我们的图数据库实现为了提高查询性能,在节点内部存储了边的指针(或者说引用)。这样做的好处是,无论数据库有多大,从一个节点到相邻节点的访问是常数时间,因此数据访问的效率非常高。
但一个潜在的问题是,如果数据库规模非常大,已经无法整个放在内存中,或者出于安全性等原因要实现分布式访问的话,那么指针就无法使用了,必须要考虑其他机制来解决这个问题。分布式数据库无论采用何种数据模型都是一个棘手的问题,在本文中我们没有涉及。有兴趣的读者也可以考虑 500lines 系列中关于分布式和集群算法的其他一些文章。
本文的实现和系列中其他数据库类似,采用 Python 作为实现语言,而原作者使用的是 JavaScript ,这应该和作者的背景有关。我相信对于大多数开发者来说, Python 的对象机制比 JavaScript 基于原型的语法应该是更容易阅读和理解的。
当然,原作者的版本比本文版本在实现上其实是更为完善的,灵活性也更好。如果想要更为优雅的实现,我们可以考虑使用 Python 元编程,那样会更接近于作者的实现,但也会让程序的复杂性大为增加。如果读者有兴趣,不妨对照着去读读原作者的版本。
⑶ java和python是什么
java和python都是一种面向对象的语言。
Java是一种面向对象的语言,有着和C/C++近似的语法。它是动态链接,允许新的代码在运行时加载与运行,而不是动态类型的。Java的演变相对较慢,最近才合并了一些功能用以支持函数式编程。相对的这种语言和VM的哲学都是将向后兼容作为首要指令。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。而且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python是建立一个可扩展的对象模型的常用语言。用于面向对象的设计并不意味着开发者用Python写代码时最常用的风格就是面向对象的风格,它同样支持过程式编程,模块化编程和某些方面的函数式编程。
想了解更多有关Java和Python的详情,推荐咨询达内教育。达内教育拥有1v1督学跟踪式学习有疑问随时沟通,企业级项目,课程穿插大厂真实项目讲解,对标企业人才标准制定专业学习计划,囊括主流热点技术,理论知识+学习思维+实战操作,打造完整学习闭环。达内教育实战讲师、经验丰富、多种班型供学员选择、独创TTS8.0教学系统,满足学生多样化学习需求。感兴趣的话点击此处,免费学习一下
⑷ 学习python能干什么
Python 可以做什么?
可以在服务器上使用 Python 来创建 Web 应用程序。
Python 可以与软件一起使用来创建工作流。
Python 可以连接到数据库系统。它还可以读取和修改文件。
Python 可用于处理大数据并执行复杂的数学运算。
Python 可用于快速原型设计,也可用于生产就绪的软件开发
学习完Python可枯做以从事的岗位:
1. linux运维工程师
这个职位主要就是负责Linux服务器管理,数据分析、自动化处理任务、分析网站日志、定时计划管理等等,目的是解放双手。
2. Python开发工程师
这个职位一般需要精通Python编程语言,有Django等框架的使用经验,实习无要求。
3. Python高级工程师
需要精通Linux/Unixg平台,有英语阅读功底。
4. SEO工程师
为自己或公司开发和改进SEO相关软件,实现自动化搜索引擎优化和日常重复工作。
5. Python游戏开发工程师信迹
网络游戏后端服务器逻辑的开发和处理,有大型数据库使用经验,喜欢从事游戏相关工作。
6. Web网站开发方向
熟悉Web开发的常用 Python框架,熟悉掌握Mysql类数据库的操作即可。
7. Python自动化测试
熟悉自动化流程没坦衡、方法和常用的模块的使用,有英文读写的能力。
⑸ Python能做什么,能够开发什么项目
Python是一种计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
Python是一种解释型脚本语言,可以应用于Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发这些领域。
Python的应用
1、系统编程
提供API(Application Programming Interface应用程序编程接口),能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。
2、图形处理
有PIL、Tkinter等图形库支持,能方便进行图形处理。
3、数学处理
NumPy扩展提供大量与许多标准数学库的接口。
4、文本处理
python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
5、数据库编程
程序员可通过遵循Python DB-API(数据库应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
6、网络编程
提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet 及BitTorrent. Google都在广泛地使用它。
7、Web编程
应用的开发语言,支持最新的XML技术。
8、多媒体应用
Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。
9、pymo引擎
PYMO全称为python memories off,是一款运行于Symbian S60V3,Symbian3,S60V5, Symbian3, Android系统上的AVG游戏引擎。因其基于python2.0平台开发,并且适用于创建秋之回忆(memories off)风格的AVG游戏,故命名为PYMO。
10、黑客编程
python有一个hack的库,内置了你熟悉的或不熟悉的函数,但是缺少成就感。
⑹ Python是什么
Python不仅仅是一个设计优秀的程序语言,它能够完成现实中的各种任务,你可以在任何场合应用Python,从网站和游戏开发到机器人和航天飞机控制。(如何学好Python,请看总结!)
尽管如此,Python的应用领域分为下面几类。下文将介绍一些Python具体能帮我们做的事情。
1.python可以用于系统编程Python对操作系统服务的内置接口,使其成为编写可移植的维护操作系统的管理工具和部件(有时也被称为Shell工具)的理想工具。
Python程序可以搜索文件和目录树,可以运行其他程序,用进程或线程进行并行处理等等。
2.python可以用于用户图形接口Python的简洁以及快速的开发周期十分适合开发GUI程序。
此外,基于C平台的工具包wxPythonGUIAPI可以使用Python构建可移植的GUI。诸如PythonCard和Dabo等一些高级工具包是构建在wxPython和Tkinter的基础API之上的。通过适当的库,你可以使用其他的GUI工具包,例如,Qt、GTK、MFC和Swing等。
3..python可以用于Internet脚本Python提供了标准Internet模块,使Python能够广泛地在多种网络任务中发挥作用,无论是在服务器端还是在客户端都是如此。而且网络上还可以获得很多使用Python进行Internet编程的第三方工具此外,Python涌现了许多Web开发工具包,例如,Django、TurboGears、Pylons、Zope和WebWare,使Python能够快速构建功能完善和高质量的网站。
4.python可以用于组件集成在介绍Python作为控制语言时,曾涉及它的组件集成的角色。Python可以通过C/C系统进行扩展,并能够嵌套C/C系统的特性,使其能够作为一种灵活的粘合语言,脚本化处理其他系统和组件的行为。
例如,将一个C库集成到Python中,能够利用Python进行测试并调用库中的其他组件;将Python嵌入到产品中,在不需要重新编译整个产品或分发源代码的情况下,能够进行产品的单独定制。5.python能用于数据库编程对于传统的数据库需求,Python提供了对所有主流关系数据库系统的接口,Python定义了一种通过Python脚本存取SQL数据枯橘厅库系统的可移植的数据库API,这个API对于各种底层应用的数据库系统都是统一的。
所以一个写给自由软件MySQL系统的脚本在很大程度上不需改变就可以工作在其他系统没隐上(例如,Oracle)--你仅需要将底层的厂商接口替换掉就可以实现。
6.python可以用于快速原型对于Python程序来说,使用Python或C编写的组件看起来都是一样的。正因为如此,我们可以在一开始利用Python做系统原型,之后再将组件移植到C或C这样的编译语言上。
7.python可以用于数值计算和科学计算编程我们之前提到过的NumPy数值编程扩展包括很多高级工具,通过将Python与出于速度考虑而使用编译语言编写的数值计算的常规代码进行集成,其他一些数值计算工具为Python提供了动画、3D可视化、并行处理等功能的支持。
8.python可以用于游戏、图像、人工智能、XML、机器人等Python的应用领域很多,远比这里提到的多得多。例如,可以利用pygame系统使用Python对图形和游戏进行编程;用PIL和其他的一些工具进行图伍薯像处理;用PyRo工具包进行机器人控制编程。
总结:一个优秀的Python工程师在任何的公司待遇都是非常不错的,不仅仅领域很广,相比于其他的程序语言来说,Python更加灵活,功能强大,简单易学,是大部分企业,开发者,甚至运维和测试喜欢的语言,包括全世界最大的苹果公司。
⑺ 后端编程Python3-数据库编程
对大多数软件开发者而言,术语数据库通常是指RDBMS(关系数据库管理系统), 这些系统使用表格(类似于电子表格的网格),其中行表示记录,列表示记录的字段。表格及其中存放的数据是使用SQL (结构化査询语言)编写的语句来创建并操纵的。Python提供了用于操纵SQL数据库的API(应用程序接口),通常与作为标准的SQLite 3数据库一起发布。
另一种数据库是DBM (数据库管理器),其中存放任意数量的键-值项。Python 的标准库提供了几种DBM的接口,包括某些特定于UNIX平台的。DBM的工作方式 与Python中的字典类似,区别在于DBM通常存放于磁盘上而不是内存中,并且其键与值总是bytes对象,并可能受到长度限制。本章第一节中讲解的shelve模块提供了方便的DBM接口,允许我们使用字符串作为键,使用任意(picklable)对象作为值。
如果可用的 DBM 与 SQLite 数据库不够充分,Python Package Index, pypi.python.org/pypi中提供了大量数据库相关的包,包括bsddb DBM ("Berkeley DB"),对象-关系映射器,比如SQLAlchemy (www.sqlalchemy.org),以及流行的客户端/服务器数据的接口,比如 DB2、Informix、Ingres、MySQL、ODBC 以及 PostgreSQL。
本章中,我们将实现某程序的两个版本,该程序用于维护一个DVD列表,并追踪每个DVD的标题、发行年份、时间长度以及发行者。该程序的第一版使用DBM (通过shelve模块)存放其数据,第二版则使用SQLite数据库。两个程序都可以加载与保存简单的XML格式,这使得从某个程序导出DVD数据并将其导入到其他程序成为可能。与DBM版相比,基于SQL的程序提供了更多一些的功能,并且其数据设计也稍干净一些。
12.1 DBM数据库
shelve模块为DBM提供了一个wrapper,借助于此,我们在与DBM交互时,可以将其看做一个字典,这里是假定我们只使用字符串键与picklable值,实际处理时, shelve模块会将键与值转换为bytes对象(或者反过来)。
由于shelve模块使用的是底层的DBM,因此,如果其他计算机上没有同样的DBM,那么在某台计算机上保存的DBM文件在其他机器上无法读取是可能的。为解决这一问题,常见的解决方案是对那些必须在机器之间可传输的文件提供XML导入与导出功能,这也是我们在本节的DVD程序dvds-dbm.py中所做的。
对键,我们使用DVD的标题;对值,则使用元组,其中存放发行者、发行年份以及时间。借助于shelve模块,我们不需要进行任何数据转换,并可以把DBM对象当做一个字典进行处理。
程序在结构上类似于我们前面看到的那种菜单驱动型的程序,因此,这里主要展示的是与DBM程序设计相关的那部分。下面给出的是程序main()函数中的一部分, 忽略了其中菜单处理的部分代码。
db = None
try:
db = shelve.open(filename, protocol=pickle.HIGHEST_PROTOCOL)
finally:
if db is not None:
db.dose()
这里我们已打开(如果不存在就创建)指定的DBM文件,以便于对其进行读写操作。每一项的值使用指定的pickle协议保存为一个pickle,现有的项可以被读取, 即便是使用更底层的协议保存的,因为Python可以计算出用于读取pickle的正确协议。最后,DBM被关闭——其作用是清除DBM的内部缓存,并确保磁盘文件可以反映出已作的任何改变,此外,文件也需要关闭。
该程序提供了用于添加、编辑、列出、移除、导入、导出DVD数据的相应选项。除添加外,我们将忽略大部分用户接口代码,同样是因为已经在其他上下文中进行了展示。
def add_dvd(db):
title = Console.get_string("Title", "title")
if not title:
return
director = Console.get_string("Director", "director")
if not director:
return
year = Console.get_integer("Year", "year",minimum=1896,
maximum=datetime,date.today().year)
ration = Console.get_integer("Duration (minutes)", "minutes“, minimum=0, maximum=60*48)
db[title] = (director, year, ration)
db.sync()
像程序菜单调用的所有函数一样,这一函数也以DBM对象(db)作为其唯一参数。该函数的大部分工作都是获取DVD的详细资料,在倒数第二行,我们将键-值项存储在DBM文件中,DVD的标题作为键,发行者、年份以及时间(由shelve模块pickled在一起)作为值。
为与Python通常的一致性同步,DBM提供了与字典一样的API,因此,除了 shelve.open() 函数(前面已展示)与shelve.Shelf.sync()方法(该方法用于清除shelve的内部缓存,并对磁盘上文件的数据与所做的改变进行同步——这里就是添加一个新项),我们不需要学习任何新语法。
def edit_dvd(db):
old_title = find_dvd(db, "edit")
if old_title is None:
return
title = Console.get.string("Title", "title", old_title)
if not title:
return
director, year, ration = db[old_title]
...
db[title]= (director, year, ration)
if title != old_title:
del db[old_title]
db.sync()
为对某个DVD进行编辑,用户必须首先选择要操作的DVD,也就是获取DVD 的标题,因为标题用作键,值则用于存放其他相关数据。由于必要的功能在其他场合 (比如移除DVD)也需要使用,因此我们将其实现在一个单独的find_dvd()函数中,稍后将査看该函数。如果找到了该DVD,我们就获取用户所做的改变,并使用现有值作为默认值,以便提高交互的速度。(对于这一函数,我们忽略了大部分用户接口代码, 因为其与添加DVD时几乎是相同的。)最后,我们保存数据,就像添加时所做的一样。如果标题未作改变,就重写相关联的值;如果标题已改变,就创建一个新的键-值对, 并且需要删除原始项。
def find_dvd(db, message):
message = "(Start of) title to " + message
while True:
matches =[]
start = Console.get_string(message, "title")
if not start:
return None
for title in db:
if title.lower().startswith(start.lower()):
matches.append(title)
if len(matches) == 0:
print("There are no dvds starting with", start)
continue
elif len(matches) == 1:
return matches[0]
elif len(matches) > DISPLAY_LIMIT:
print("Too many dvds start with {0}; try entering more of the title".format(start)
continue
else:
matches = sorted(matches, key=str.lower)
for i, match in enumerate(matches):
print("{0}: {1}".format(i+1, match))
which = Console.get_integer("Number (or 0 to cancel)",
"number", minimum=1, maximum=len(matches))
return matches[which - 1] if which != 0 else None
为尽可能快而容易地发现某个DVD,我们需要用户只输入其标题的一个或头几个字符。在具备了标题的起始字符后,我们在DBM中迭代并创建一个匹配列表。如果只有一个匹配项,就返回该项;如果有几个匹配项(但少于DISPLAY_LIMIT, 一个在程序中其他地方设置的整数),就以大小写不敏感的顺序展示所有这些匹配项,并为每一项设置一个编号,以便用户可以只输入编号就可以选择某个标题。(Console.get_integer()函数可以接受0,即便最小值大于0,以便0可以用作一个删除值。通过使用参数allow_zero=False, 可以禁止这种行为。我们不能使用Enter键,也就是说,没有什么意味着取消,因为什么也不输入意味着接受默认值。)
def list_dvds(db):
start =”"
if len(db)> DISPLAY.LIMIT:
start = Console.get_string(“List those starting with [Enter=all]”, "start”)
print()
for title in sorted(db, key=str.lower):
if not start or title.Iower().startswith(start.lower()):
director, year, ration = db[title]
print("{title} ({year}) {ration} minute{0}, by "
"{director}".format(Util.s(ration),**locals()))
列出所有DVD (或者那些标题以某个子字符串引导)就是对DBM的所有项进行迭代。
Util.s()函数就是简单的s = lambda x: "" if x == 1 else "s",因此,如果时间长度不是1分钟,就返回"s"。
def remove_dvd(db):
title = find_dvd(db, "remove")
if title is None:
return
ans = Console.get_bool("Remove {0}?".format(title), "no")
if ans:
del db[title]
db.sync()
要移除一个DVD,首先需要找到用户要移除的DVD,并请求确认,获取后从DBM中删除该项即可。
到这里,我们展示了如何使用shelve模块打开(或创建)一个DBM文件,以及如何向其中添加项、编辑项、对其项进行迭代以及移除某个项。
遗憾的是,在我们的数据设计中存在一个瑕疵。发行者名称是重复的,这很容易导致不一致性,比如,发行者Danny DeVito可能被输入为"Danny De Vito",用于 一个电影;也可以输入为“Danny deVito",用于另一个。为解决这一问题,可以使用两个DBM文件,主DVD文件使用标题键与(年份,时间长度,发行者ID)值; 发行者文件使用发行者ID (整数)键与发行者名称值。下一节展示的SQL数据库 版程序将避免这一瑕疵,这是通过使用两个表格实现的,一个用于DVD,另一个用于发行者。
12.2 SQL数据库
大多数流行的SQL数据库的接口在第三方模块中是可用的,Python带有sqlite3 模块(以及SQLite 3数据库),因此,在Python中,可以直接开始数据库程序设计。SQLite是一个轻量级的SQL数据库,缺少很多诸如PostgreSQL这种数据库的功能, 但非常便于构造原型系统,并且在很多情况下也是够用的。
为使后台数据库之间的切换尽可能容易,PEP 249 (Python Database API Specification v2.0)提供了称为DB-API 2.0的API规范。数据库接口应该遵循这一规范,比如sqlite3模块就遵循这一规范,但不是所有第三方模块都遵循。API规范中指定了两种主要的对象,即连接对象与游标对象。表12-1与表12-2中分别列出了这两种对象必须支持的API。在sqlite3模块中,除DB-API 2.0规范必需的之外,其连接对象与游标对象都提供了很多附加的属性与方法。
DVD程序的SQL版本为dvds.sql.py,该程序将发行者与DVD数据分开存储,以 避免重复,并提供一个新菜单,以供用户列出发行者。该程序使用的两个表格在图12-1
def connect(filename):
create= not os.path.exists(filename)
db = sqlite3.connect(filename)
if create:
cursor = db.cursor()
cursor.execute("CREATE TABLE directors ("
"id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL, "
"name TEXT UNIQUE NOT NULL)")
cursor.execute("CREATE TABLE dvds ("
"id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL, "
"title TEXT NOT NULL, "
"year INTEGER NOT NULL,"
"ration INTEGER NOT NULL, "
"director_id INTEGER NOT NULL, ”
"FOREIGN KEY (director_id) REFERENCES directors)")
db.commit()
return db
sqlite3.connect()函数会返回一个数据库对象,并打开其指定的数据库文件。如果该文件不存在,就创建一个空的数据库文件。鉴于此,在调用sqlite3.connect()之前,我们要注意数据库是否是准备从头开始创建,如果是,就必须创建该程序要使用的表格。所有査询都是通过一个数据库游标完成的,可以从数据库对象的cursor()方法获取。
注意,两个表格都是使用一个ID字段创建的,ID字段有一个AUTOINCREMENT 约束——这意味着SQLite会自动为ID字段赋予唯一性的数值,因此,在插入新记录时,我们可以将这些字段留给SQLite处理。
SQLite支持有限的数据类型——实际上就是布尔型、数值型与字符串——但使用数据'‘适配器”可以对其进行扩展,或者是扩展到预定义的数据类型(比如那些用于日期与datetimes的类型),或者是用于表示任意数据类型的自定义类型。DVD程序并不需要这一功能,如果需要,sqlite3模块的文档提供了很多详细解释。我们使用的外部键语法可能与用于其他数据库的语法不同,并且在任何情况下,只是记录我们的意图,因为SQLite不像很多其他数据库那样需要强制关系完整性,sqlite3另一点与众不同的地方在于其默认行为是支持隐式的事务处理,因此,没有提供显式的“开始事务” 方法。
def add_dvd(db):
title = Console.get_string("Title", "title")
if not title:
return
director = Console.get_string("Director", "director")
if not director:
return
year = Console.get_integer("Year", "year”, minimum=1896,
maximum=datetime.date.today().year)
ration = Console.get_integer("Duration (minutes)", "minutes",
minimum=0,maximum=60*48)
director_id = get_and_set_director(db, director)
cursor = db.cursor()
cursor.execute("INSERT INTO dvds ”
"(title, year, ration, director_id)"
"VALUES (?, ?, ?, ?)",
(title, year, ration, director_id))
db.commit()
这一函数的开始代码与dvds-dbm.py程序中的对应函数一样,但在完成数据的收集后,与原来的函数有很大的差别。用户输入的发行者可能在也可能不在directors表格中,因此,我们有一个get_and_set_director()函数,在数据库中尚无某个发行者时, 该函数就将其插入到其中,无论哪种情况都返回就绪的发行者ID,以便在需要的时候插入到dvds表。在所有数据都可用后,我们执行一条SQL INSERT语句。我们不需要指定记录ID,因为SQLite会自动为我们提供。
在査询中,我们使用问号(?)作为占位符,每个?都由包含SQL语句的字符串后面的序列中的值替代。命名的占位符也可以使用,后面在编辑记录时我们将看到。尽管避免使用占位符(而只是简单地使用嵌入到其中的数据来格式化SQL字符串)也是可能的,我们建议总是使用占位符,并将数据项正确编码与转义的工作留给数据库模块来完成。使用占位符的另一个好处是可以提高安全性,因为这可以防止任意的SQL 被恶意地插入到一个査询中。
def get_and_set_director(db, director):
director_id = get_director_id(db, director)
if directorjd is not None:
return director_id
cursor = db.cursor()
cursor.execute("lNSERT INTO directors (name) VALUES (?)”,(director,))
db.commit()
return get_director_id(db, director)
这一函数返回给定发行者的ID,并在必要的时候插入新的发行者记录。如果某个记录被插入,我们首先尝试使用get_director_id()函数取回其ID。
def get_director_id(db, director):
cursor = db.cursor()
cursor.execute("SELECT id FROM directors WHERE name=?",(director,))
fields = cursor.fetchone()
return fields[0] if fields is not None else None
get_director_id()函数返回给定发行者的ID,如果数据库中没有指定的发行者,就返回None。我们使用fetchone()方法,因为或者有一个匹配的记录,或者没有。(我们知道,不会有重复的发行者,因为directors表格的名称字段有一个UNIQUE约束,在任何情况下,在添加一个新的发行者之前,我们总是先检査其是否存在。)这种取回方法总是返回一个字段序列(如果没有更多的记录,就返回None)。即便如此,这里我们只是请求返回一个单独的字段。
def edit_dvd(db):
title, identity = find_dvd(db, "edit")
if title is None:
return
title = Console.get_string("Title","title", title)
if not title:
return
cursor = db.cursor()
cursor.execute("SELECT dvds.year, dvds.ration, directors.name"
“FROM dvds, directors "
"WHERE dvds.director_id = directors.id AND "
"dvds.id=:id", dict(id=identity))
year, ration, director = cursor.fetchone()
director = Console.get_string("Director", "director", director)
if not director:
return
year = Console,get_integer("Year","year", year, 1896,datetime.date.today().year)
ration = Console.get_integer("Duration (minutes)", "minutes",
ration, minimum=0, maximum=60*48)
director_id = get_and_set_director(db, director)
cursor.execute("UPDATE dvds SET title=:title, year=:year,"
"ration=:ration, director_id=:directorjd "
"WHERE id=:identity", locals())
db.commit()
要编辑DVD记录,我们必须首先找到用户需要操纵的记录。如果找到了某个记录,我们就给用户修改其标题的机会,之后取回该记录的其他字段,以便将现有值作为默认值,将用户的输入工作最小化,用户只需要按Enter键就可以接受默认值。这里,我们使用了命名的占位符(形式为:name),并且必须使用映射来提供相应的值。对SELECT语句,我们使用一个新创建的字典;对UPDATE语句,我们使用的是由 locals()返回的字典。
我们可以同时为这两个语句都使用新字典,这种情况下,对UPDATE语句,我们可以传递 dict(title=title, year=year, ration=ration, director_id=director_id, id=identity)),而非 locals()。
在具备所有字段并且用户已经输入了需要做的改变之后,我们取回相应的发行者ID (如果必要就插入新的发行者记录),之后使用新数据对数据库进行更新。我们采用了一种简化的方法,对记录的所有字段进行更新,而不仅仅是那些做了修改的字段。
在使用DBM文件时,DVD标题被用作键,因此,如果标题进行了修改,我们就需要创建一个新的键-值项,并删除原始项。不过,这里每个DVD记录都有一个唯一性的ID,该ID是记录初次插入时创建的,因此,我们只需要改变任何其他字段的值, 而不需要其他操作。
def find_dvd(db, message):
message = "(Start of) title to " + message
cursor = db.cursor()
while True: .
start = Console.get_stnng(message, "title")
if not start:
return (None, None)
cursor.execute("SELECT title, id FROM dvds "
"WHERE title LIKE ? ORDER BY title”,
(start +"%",))
records = cursor.fetchall()
if len(records) == 0:
print("There are no dvds starting with", start)
continue
elif len(records) == 1:
return records[0]
elif len(records) > DISPLAY_LIMIT:
print("Too many dvds ({0}) start with {1}; try entering "
"more of the title".format(len(records),start))
continue
else:
for i, record in enumerate(records):
print("{0}:{1}".format(i + 1, record[0]))
which = Console.get_integer("Number (or 0 to cancel)",
"number", minimum=1, maximum=len(records))
return records[which -1] if which != 0 else (None, None)
这一函数的功能与dvdsdbm.py程序中的find_dvd()函数相同,并返回一个二元组 (DVD标题,DVD ID)或(None, None),具体依赖于是否找到了某个记录。这里并不需要在所有数据上进行迭代,而是使用SQL通配符(%),因此只取回相关的记录。
由于我们希望匹配的记录数较小,因此我们一次性将其都取回到序列的序列中。如果有不止一个匹配的记录,但数量上又少到可以显示,我们就打印记录,并将每条记录附带一个数字编号,以便用户可以选择需要的记录,其方式与在dvds-dbm.py程序中所做的类似:
def list_dvds(db):
cursor = db.cursor()
sql = ("SELECT dvds.title, dvds.year, dvds.ration, "
"directors.name FROM dvds, directors "
"WHERE dvds.director_id = directors.id")
start = None
if dvd_count(db) > DISPLAY_LIMIT:
start = Console.get_string("List those starting with [Enter=all]", "start")
sql += " AND dvds.title LIKE ?"
sql += ” ORDER BY dvds.title"
print()
if start is None:
cursor.execute(sql)
else:
cursor.execute(sql, (start +"%",))
for record in cursor:
print("{0[0]} ({0[1]}) {0[2]} minutes, by {0[3]}".format(record))
要列出每个DVD的详细资料,我们执行一个SELECT査询。该査询连接两个表,如果记录(由dvd_count()函数返回)数量超过了显示限制值,就将第2个元素添加到WHERE 分支,之后执行该査询,并在结果上进行迭代。每个记录都是一个序列,其字段是与 SELECT査询相匹配的。
def dvd_count(db):
cursor = db.cursor()
cursor.execute("SELECT COUNT(*) FROM dvds")
return cursor.fetchone()[0]
我们将这几行代码放置在一个单独的函数中,因为我们在几个不同的函数中都需要使用这几行代码。
我们忽略了 list_directors()函数的代码,因为该函数在结构上与list_dvds()函数非常类似,只不过更简单一些,因为本函数只列出一个字段(name)。
def remove_dvd(db):
title, identity = find_dvd(db, "remove")
if title is None:
return
ans = Console.get_bool("Remove {0}?".format(title), "no")
if ans:
cursor = db.cursor()
cursor.execute("DELETE FROM dvds WHERE id=?", (identity,))
db.commit()
在用户需要删除一个记录时,将调用本函数,并且本函数与dvds-dbm.py程序中 相应的函数是非常类似的。
到此,我们完全查阅了 dvds-sql.py程序,并且了解了如何创建数据库表格、选取 记录、在选定的记录上进行迭代以及插入、更新与删除记录。使用execute()方法,我们可以执行底层数据库所支持的任意SQL语句。
SQLite提供了比我们这里使用的多得多的功能,包括自动提交模式(以及任意其他类型的事务控制),以及创建可以在SQL查询内执行的函数的能力。提供一个工厂函数并用于控制对每个取回的记录返回什么(比如,一个字典或自定义类型,而不是字段序列)也是可能的。此外,通过传递“:memory:”作为文件名,创建内存中的SQLite 数据库也是可能的。
以上内容部分摘自视频课程05后端编程Python22 数据库编程,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。
⑻ 请问python主要应用领域是什么,哪方面用的多了....
Web开发:最火的Python Web框架Django,支持异步高并发的Tornado框架,短小精悍的flask,bootle,Django官方的标语把Django定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率Web框架)。
网络编程:支持高并发的Twisted网络框架,py3引入的asyncio使异步编程变得非常简单。
爬虫:在爬虫领域,Python几乎是霸主地位,Scrapy、Request、BeautifuSoap、urllib等,想爬什么爬什么。
云计算:目前最火的知名的云计算框架是OpenStack,Python现在的火爆,很大一部分就是因为云计算。
人工智能/数据分析:Python是目前公认的人工智能和数据分析领域的首选语言。
自动化运维:问问中国运维人员,运维人员必须会什么语言?十分之九的人会回答Python。
不仅这些,Python还可以做的事情有很多,比如金融分析,Python是金融分析、量化交易领域使用最多的编程语言;科学计算,Python越来越适用于科学计算、绘制高质量的2D和3D图像。
此外,现在很多公司都在使用Python,比如谷歌,Google APP Engine、Google earth、谷歌爬虫等,都在大量使用Python开发;NASA,大量使用Python进行数据分析和运算;YouTube,世界上最大的视频网站YouTube就是用Python开发的;Redhat,世界上最流行的Linux发行版本中的yum包管理工具就是用Python开发的。远不止这些,还有国内的豆瓣、知乎、春雨医生、腾讯、搜狐、网络、阿里等公司都在使用Python完成各种任务。
⑼ 请问python主要应用领域是什么,哪方面用的多了.
python主要应用领域:
1、云计算:
PYTHON语言算是云计算最火的语言,典型应用OpenStack。
2、WEB前端开发
python相比php uby的模块化设计,非常便于功能扩展;多年来形成了大量优秀的web开发框架,并且在不断迭代;如目前优秀的全栈的django、框架flask,都继承了python简单、明确的风格,开发效率高、易维护,与自动化运维结合性好陵手。
python已经成为自动化运维平台领域的事实标准;众多大型网站均为Python开发,Youtube, Dropbox, 豆瓣。
3、人工智能应用
基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python的支持,目前世界优秀的人工智能学习框架如Google的TransorFlow 、FaceBook的PyTorch以及开源社区的神经网络库Karas等是用python实现的。
甚至微软的CNTK(认知工具包)也完全含汪指支持Python,而且微软的Vscode都已经把Python作为第一级语言进行支持。
4、系统运维工程项目
Python在与操作系统结合以及管理中非常密切,目前所有linux发行版中都带有python,且对于linux中相关的管理功能都有大量的模块可以使用,例如目前主流的自动化配置管理工具:SaltStackAnsible(目前是RedHat的)。
目前在几乎所有互联网公司,自动化运维的标配就是python+Django/flask,另外,在虚拟化管理方面已经是事实标准的openstack就是python实现的,所以Python是所有运维人员的谈配必备技能。
5、金融理财分析
量化交易,金融分析,在金融工程领域,Python语言不但在用,且用的最多,而且重要性逐年提高。原因:作为动态语言的Python,语言结构清晰简单,库丰富,成熟稳定,科学计算和统计分析都很牛逼,生产效率远远高于c,c++,java,尤其擅长策略回测。
5、大数据分析
Python语言相对于其它解释性语言最大的特点是其庞大而活跃的科学计算生态,在数据分析、交互、可视化方面有相当完善和优秀的库(python数据分析栈:Numpy Pandas ScipyMatplotlipIpython)
并且还形成了自己独特的面向科学计算的Python发行版Anaconda,而且这几年一直在快速进化和完善,对传统的数据分析语言如R MATLAB SAS Stata形成了非常强的替代性。
⑽ Python有哪些技术上的优点比其他语言好在哪儿
Python有哪些技术上的优点
1. 面向对象和函数式
从根本上讲,Python是一种面向对象的语言。它的类模型支持多态、运算符重载和多重继承等高级概念,并且以Python特有的简洁的语法和类型为背景,OOP十分易于使用。事实上,即使你不懂这些术语,仍会发现学习Python比学习其他OOP语言要容易得多。
除了作为一种强大的代码组织和重用手段以外,Python的OOP本质使它成为其他面向对象系统语言的理想脚本工具。例如,通过适当的粘接代码,Python程序可以对C++、Java和C#的类进行子类的定制。
OOP只是Python的一个选择而已,这一点非常重要。即使不能立马成为一个面向对象高手,但你同样可以继续深入学习。就像C++一样,Python既支持面向对象编程也支持面向过程编程的模式。如果条件允许,其面向对象的工具可以立即派上用场。这对策略开发模式十分有用,该模式常用于软件开发的设计阶段。
除了最初的过程式(语句为基础)和面向对象(类为基础)的编程范式,Python在最近几年内置了对函数式编程的支持——一个多数情况下包括生成器、推导、闭包、映射、装饰器、匿名lambda函数和第一类函数对象的集合。这是对其本身OOP工具的补充和替代。
2. 免费
Python的使用和分发是完全免费的。就像其他的开源软件一样,例如,Tcl、Perl、Linux和Apache。你可以从Internet上免费获得Python的源代码。你可以不受限制地复制Python,或将其嵌入你的系统或者随产品一起发布。实际上,如果你愿意的话,甚至可以销售它的源代码。
但请别误会:“免费”并不代表“没有支持”。恰恰相反,Python的在线社区对用户需求的响应和商业软件一样快。而且,由于Python完全开放源代码,提高了开发者的实力,并产生了一个很大的专家团队。
尽管研究或改变一种程序语言的实现并不是对每一个人来说都那么有趣,但是当你知道如果需要的话可以做到这些,该是多么的令人欣慰。你不需要去依赖商业厂商的智慧,因为最终的文档和终极的净土(源码)任凭你的使用。
Python的开发是由社区驱动的,是Internet大范围的协同合作努力的结果。Python语言的改变必须遵循一套规范而有约束力的程序(称作PEP流程),并需要经过规范的测试系统进行彻底检查。正是这样才使得Python相对于其他语言和系统可以保守地持续改进。
尽管Python 2.X和Python 3.X版本之间的分裂有力并蓄意地破坏了这项传统,但通常它仍然体现在Python的这两个系列内部。