导航:首页 > 编程语言 > python多线程爬虫实例

python多线程爬虫实例

发布时间:2023-04-13 21:33:12

‘壹’ python爬虫:如何在一个月内学会爬取大规模数

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
- -
学习 Python 包并实现基本的爬虫过程
大部分Python爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
- -
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
- -
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
- -
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
- -
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。
- -
分布式Python爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的

‘贰’ 如何入门 Python 爬虫

入门的话,我的经历:
1.先用python写一个爬取网页源代码的爬虫(最先是爬取个人博客,会遇到乱码问题当时困扰了很久)

2.后来写了爬取网络图片的程序,自动下载小说(我爱看小说-_-)(接触正则表达式)
3.然后网络图片他那种分页模式,一般一页只有20张左右的图片,分析源代码,完善爬取程序,不受到限制,一次可以下几千张(图片有的是原图,有的是缩略图)
4.后来发现程序卡顿,就添加了多线程。
5.然后模拟登陆一些不用验证码的网页(我学校的oj),cookie登陆B站(本来想写一个抢楼的脚本的,后来发现抢楼的被封号了-_-,就放弃了)

对于使用的库,python2 与 python3 有点不同,我学的是python3
先用的是urllib.request,后来用requests(第三方库),在后来接触Scrapy(也是第三方库)
现在因为事情多了,就把python放下了,准备寒假写一些脚本,毕竟python不会有期末考试...

我的个人经历,希望可以帮到你。

‘叁’ 如何用Python做爬虫

1)首先你要明白爬虫怎样工作。

想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。

在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。

突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。

好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。

那么在python里怎么实现呢?
很简单

import Queue

initial_page = "初始化页"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

写得已经很伪代码了。

所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。

2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。

问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。

通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example

注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]

好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。

3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...

那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?

我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)

考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。

代码于是写成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。

但是如果附加上你需要这些后续处理,比如

有效地存储(数据库应该怎样安排)

有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)

有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...

及时更新(预测这个网页多久会更新一次)

如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。

所以,不要问怎么入门,直接上路就好了:)

‘肆’ 如何入门 Python 爬虫

“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢厅好耐慢学习。
另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门袜简”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。
先长话短说总结一下。你需要学习:
基本的爬虫工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https: //github.com /nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说。说说当初写的一个集群爬下整个豆瓣的经验吧。
1)首先你要明白爬虫怎样工作
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用扮春你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?很简单:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter。简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…及时更新(预测这个网页多久会更新一次)如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,“路漫漫其修远兮,吾将上下而求索”。

‘伍’ python的问题

IDE选用这里推荐两款常用的 IDE,可以按照自己的条件和场景来选择。PyCharmPyCharm 是由 JetBrain 的人员制作的 IDE,该团队负责最着名的 Java IDE,IntelliJ IDEA之一。PyCharm 的界面和功能对于那些有使用过其他 JetBrain 产品的人来说,是完美的。 此外,如果您喜欢 IPython 或 Anaconda 发行版,那么 PyCharm 可以将其工具和库(如NumPyMatplotlib)集成在一起,从而让您可以使用数组查看器和交互式图表。Thonny现在的开发工具太多了,而且每个开发工具都致力于做成最好用最智能的工具,所以功能越堆越多,越怼越智能。安装这些开发工具比较烧脑,经常需要经过许多配置步骤。作为一个 Python 开发者来说,好多人光是这些配置都要弄半天。配置好之后,打开软件,发现满屏都是菜单、按钮,无从下手,学习这些功能使用又是一大难题。这是一款对初学者特别友好的开发 IDE,它是由爱沙尼亚的 Tartu 大学开发,十分易于上手,还支持插件。如果你有编程基础,会其他编程语言,那么建议你用Pycharm。如果你是编程小白,或者零基础上手,那么建议你用Thonny。入门首先要学习Python基础知识,直接上课程:Python 环境搭建Python 基础语法Python 变量与数据类型Python 流程控制Python函数Python 模块和包Python 数据结构--序列Python ListPython tupplePython 类与对象Python 字典Python 集合Python 函数的参数Python 高阶函数Python 输入输出Python 错误和异常Python 之引用Python 之迭代器Python 之装饰器Python NameSpace & ScopePython Standard Library 01Python Standard Library 02Python datetime 和 timePython 垃圾回收机制Python 到底是值传递还是引用传递Python 之对象的比较与拷贝进阶通过上面基础知识的学习,相信你已经知道Python是个什么玩意了,对它也有一个初步的了解,对它的入门知识点也有些印象了。这时候你需要进阶学习,在入门的基础上更进一步。下面就从 Python 模块、Python爬虫基础、Python Web开发、Python 数据库操作、Python 数据分析及数据科学、Python IO及异步、Python网络编程、Python图像处理、Python 办公、Python 机器学习、Python 可视化 这些Python的基础大类来进行深入学习。Python 模块Python os 模块详解Python shutil 模块Python sys 模块详解Python queue 模块详解Python collections 模块Python random 模块Python logging 模块详解Python 枚举Python json&picklepathlib 模块Python calendar 模块Python math 模块Python decimal 模块Python itertools 模块Python statistics 模块Python operator 模块Python paramiko 模块Python filecmp&difflib模块初识 Python 多线程Python 多线程之 threading 模块Python Queue 进阶用法Python multiprocessing 模块Python 线程池Python 多线程 EventPython爬虫基础爬虫介绍Python 爬虫之 urllib 包基本使用Python 用户登录 Flask-LoginPython Requests 库的基本使用Python Requests 库高级用法正则表达式XPath 和 lxml爬虫利器 Beautiful Soup 之遍历文档PyQuery 详解爬虫利器 Beautiful Soup 之搜索文档Selenium 环境配置Selenium详解Python Scrapy 爬虫框架及搭建Python Scrapy 项目实战PySpider框架的使用Scrapy 模拟登陆Python 解析 XML爬取微信公众号文章内容Python 爬取豆瓣电影 top 250Python newspaper 框架Python Web开发Web 开发 Flask 介绍Web开发 Jinja2模板引擎Flask 框架集成BootstrapWeb表单Flask数据持久化Web 开发 RESTfulPython Web开发 Django 简介Python Django 模型概述与应用HTTP 入门Python Web 开发之 JWT 简介Python Web开发 OAuth2.0 简介OAuth2.0 客户端实战Flask 单元测试Web 开发 Django 管理工具Web 开发 Django 模板Flask 项目结构Python 数据库操作Python 操作 Redis 数据库介绍Python 操作 SQLitePython 操作 MongoDB 数据库介绍Python 操作 MySQLPython SQLAlchemyPython 数据分析及数据科学数据分析之 Numpy 初步NumPy Ndarray 对象及数据类型NumPy 字符串操作NumPy 数学函数NumPy 统计函数NumPy 排序和筛选函数NumPy 位运算与算术函数数据分析之 pandas 初步NumPy 矩阵Numpy 中数组和矩阵的区别Python IO及异步文件读写StringIO & BytesIOPython asyncioPython异步之aiohttpPython网络编程TCP 编程UDP 编程Python图像处理图像库 PIL(一)图像库 PIL(二)图像库 PIL 实例—验证码去噪Python 办公Python 操作 ExcelPython 操作 WordPython 解析 PDFPython 操作 CSVPython 机器学习机器学习概览第 112 天:机器学习算法之蒙特卡洛Python XGBoost 算法项目实战三木板模型算法项目实战第116天:机器学习算法之朴素贝叶斯理论机器学习算法之 K 近邻第120天:机器学习算法之 K 均值聚类机器学习之决策树Python 可视化Python matplotlib introctionPython Matplotlib 进阶操作Seaborn-可视化统计关系Seaborn-可视化分类数据Seaborn-可视化数据集的分布实战Python的知识点学完了之后,并不代表学完了。这只能代表你会Python了,并不能表示你可以去找工作、你可以去接单了。因为你还缺乏实战练习,这个阶段需要你能从一个实际需求中进行建模,然后用Python去实现模型,得到预期的结果。这里列一些贴近工作生活实际的小项目,每个项目都能让你学习到如何进行需求建模,如何用代码去实现,去解决实际的问题。解析网络网盘链接:几行代码,网盘链接提头来见!揭露出轨女友:女友加班发自拍,男友用几行代码发现惊天秘密...爬取小程序:不能爬小程序,叫什么会爬虫解密当代女性胸围:我半夜爬了严选的女性文胸数据,发现了惊天秘密制作签名软件:牛逼!用Python为她设计专属签名软件!识别车牌:如何用 Python 识别车牌?追女神:用Python助女神发朋友圈下载知乎美女图片:Python 抓取知乎几千张小姐姐图片是什么体验?炒股赚钱:一份代码帮我赚了10万写小游戏:不到 150 行代码写一个 Python 版的贪吃蛇抠图无烦恼:Python装逼指南——五行代码实现批量抠图跟踪房价数据:看我如何抓取最新房价数据跟女友恶作剧:女友电脑私存撕葱帅照,我用python偷梁换柱...自动抢红包:强大!用 60 行代码自动抢微信红包下载B站视频:使用 Python 下载 B 站视频更多精彩可以关注我的专栏:我是@无欢不散,看到这里的朋友请帮忙点个赞,也可以关注 @无欢不散 不迷路。

‘陆’ python网页爬虫教程

现行环境下,大数据与人工智能的重要依托还是庞大的数据和分析采集,类似于神誉淘宝 京东 网络 腾讯级别的企业 能够通过数据可观的用户群体获取需要的数据,而一般企业可能就没有这种通过产品获取数据的能力和条件,想从事这方面的工作,需掌握以下知识:
1. 学习Python基础知识并实现基本的爬虫过程
一般获取数据的过程都是按照 发送请求-获得页面反馈-解析并且存储数据 这三个流程来实现的。这个过程其实就是模拟了一个人工浏览网页的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,我们可以按照requests 负责连接网谨唯站,返回网页,Xpath 用于解析网页,便于抽取数据。
2.了解非结构化数据的存储
爬虫抓取的数据结构复杂 传统的结构化数据库可能并不是特别适合我们使用。我们前期推荐使用MongoDB 就可以。
3. 掌握一些常用的反爬虫技巧
使用代理IP池、抓包、验证码的OCR处理等处理方式即可以解决大部分网站的反爬虫策略。
4.了解分布式存储
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具游晌段就可以了。

‘柒’ Python爬虫可以爬取什么

Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:

如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。

淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程

2.了解非结构化数据的存储

3.学习scrapy,搭建工程化爬虫

4.学习数据库知识,应对大规模数据存储与提取

5.掌握各种技巧,应对特殊网站的反爬措施

6.分布式爬虫,实现大规模并发采集,提升效率

学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.

分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

以上就是我的回答,希望对你有所帮助,望采纳。

‘捌’ 有没有易懂的 Python 多线程爬虫代码

Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL1,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏“重”。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。
传统的例子
简单搜索下“Python 多线程教程”,不难发现几乎所有的教程都给出涉及类和队列的例子:
#Example.py
'''
Standard Procer/Consumer Threading Pattern
'''

import time
import threading
import Queue

class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue

def run(self):
while True:
# queue.get() blocks the current thread until
# an item is retrieved.
msg = self._queue.get()
# Checks if the current message is
# the "Poison Pill"
if isinstance(msg, str) and msg == 'quit':
# if so, exists the loop
break
# "Processes" (or in our case, prints) the queue item
print "I'm a thread, and I received %s!!" % msg
# Always be friendly!
print 'Bye byes!'

def Procer():
# Queue is used to share items between
# the threads.
queue = Queue.Queue()

# Create an instance of the worker
worker = Consumer(queue)
# start calls the internal run() method to
# kick off the thread
worker.start()

# variable to keep track of when we started
start_time = time.time()
# While under 5 seconds..
while time.time() - start_time < 5:
# "Proce" a piece of work and stick it in
# the queue for the Consumer to process
queue.put('something at %s' % time.time())
# Sleep a bit just to avoid an absurd number of messages
time.sleep(1)

# This the "poison pill" method of killing a thread.
queue.put('quit')
# wait for the thread to close down
worker.join()

if __name__ == '__main__':
Procer()

哈,看起来有些像 Java 不是吗?
我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。
问题在于…
首先,你需要一个样板类;
其次,你需要一个队列来传递对象;
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。
worker 越多,问题越多
按照这一思路,你现在需要一个 worker 线程的线程池。下面是一篇 IBM 经典教程中的例子——在进行网页检索时通过多线程进行加速。
#Example2.py
'''
A more realistic thread pool example
'''

import time
import threading
import Queue
import urllib2

class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue

def run(self):
while True:
content = self._queue.get()
if isinstance(content, str) and content == 'quit':
break
response = urllib2.urlopen(content)
print 'Bye byes!'

def Procer():
urls = [
'', ''
'', ''
# etc..
]
queue = Queue.Queue()
worker_threads = build_worker_pool(queue, 4)
start_time = time.time()

# Add the urls to process
for url in urls:
queue.put(url)
# Add the poison pillv
for worker in worker_threads:
queue.put('quit')
for worker in worker_threads:
worker.join()

print 'Done! Time taken: {}'.format(time.time() - start_time)

def build_worker_pool(queue, size):
workers = []
for _ in range(size):
worker = Consumer(queue)
worker.start()
workers.append(worker)
return workers

if __name__ == '__main__':
Procer()

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……
至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。
何不试试 map
map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。
urls = ['', '']
results = map(urllib2.urlopen, urls)

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:
results = []
for url in urls:
results.append(urllib2.urlopen(url))

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。
为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

在 Python 中有个两个库包含了 map 函数: multiprocessing 和它鲜为人知的子库 multiprocessing.mmy.
这里多扯两句: multiprocessing.mmy? mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!
mmy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 mmy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。
所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。2
动手尝试
使用下面的两行代码来引用包含并行化 map 函数的库:
from multiprocessing import Pool
from multiprocessing.mmy import Pool as ThreadPool

实例化 Pool 对象:
pool = ThreadPool()

这条简单的语句替代了 example2.py 中 build_worker_pool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。
Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。
一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py
import urllib2
from multiprocessing.mmy import Pool as ThreadPool

urls = [

# etc..
]

# Make the Pool of workers
pool = ThreadPool(4)
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish
pool.close()
pool.join()

实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
# results = []
# for url in urls:
# result = urllib2.urlopen(url)
# results.append(result)

# # ------- VERSUS ------- #

# # ------- 4 Pool ------- #
# pool = ThreadPool(4)
# results = pool.map(urllib2.urlopen, urls)

# # ------- 8 Pool ------- #

# pool = ThreadPool(8)
# results = pool.map(urllib2.urlopen, urls)

# # ------- 13 Pool ------- #

# pool = ThreadPool(13)
# results = pool.map(urllib2.urlopen, urls)

结果:
# Single thread: 14.4 Seconds
# 4 Pool: 3.1 Seconds
# 8 Pool: 1.4 Seconds
# 13 Pool: 1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。
另一个真实的例子
生成上千张图片的缩略图
这是一个 CPU 密集型的任务,并且十分适合进行并行化。
基础单进程版本
import os
import PIL

from multiprocessing import Pool
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)

def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)

if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

images = get_image_paths(folder)

for image in images:
create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。
这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。
如果我们使用 map 函数来代替 for 循环:
import os
import PIL

from multiprocessing import Pool
from PIL import Image

SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)

def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)

if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

images = get_image_paths(folder)

pool = Pool()
pool.map(creat_thumbnail, images)
pool.close()
pool.join()

5.6 秒!
虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。
到这里,我们就实现了(基本)通过一行 Python 实现并行化。

‘玖’ Python 队列queue与多线程组合(生产者+消费者模式)

在线程世界⾥,⽣产者就是⽣产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果⽣产者处理速度很快,⽽消费者处理速度很慢,那么⽣产者就必须等待消费者处理完,才能继续⽣产数据。同样的道理,如果消费者的处理能⼒⼤于⽣产者,那么消费者就必须等待⽣产者。为了解决这个问题于是引⼊了⽣产者和消费者模式。

⽣产者消费者模式是通过⼀个容器来解决⽣产者和消费者的强耦合问题。⽣产者和消费者彼此之间不直接通讯,⽽通过阻塞队列来进⾏通讯,所以⽣产者⽣产完数据之后不⽤等待消费者处理,直接扔给阻塞队列,消费者不找⽣产者要数据,⽽是唯租直接从阻塞队列⾥取,阻塞队列就相当于⼀个缓冲区,平衡了⽣产者和消费者的处理能⼒。

比如,对于同时爬取多个网页的多线程爬虫,在某一时刻你可能无法保证他们在处理不同的网站,在某些时刻他们极有可能在处理相同的网站,这岂不浪费?为了解决这个问题,可以将不同网页的url放在queue中,然后多个线程来读取queue中的url进行解析处理,而queue只允许一次出一个,出一个少一个。相同网站上不同网页的url通常有某种规律,比如某个字段的数字加1,这种情况完全可以用这种模式,“生产者程序”负责根据规律把完整的url制作出来,再塞进queue里面(如果queue满了,则等待);“消费者程序(网页解析程序)”从queue的后面答团挨个取出url进行解析(如果queue里面是空的,则等待),即使是多线程也能保证每个线程得到的是不同的url。这个过程中,生产者和消费彼此互不干涉。

下面以实例说明如何将queue与多线程相结合形成所谓的“ 生产者+消费者 ”模式,同时解决 多线程如何退出 的问题(注意下例中是“一个生产者+多个消费者”的形式,多生产者+多消费者的模式可在此基础上进一步实现):

上述程序的过程如下图:

注意
(1)上述程序中生产者插入queue的时间间隔为0.1s,而消费者的取出时间间隔为2s,显然消费速度不如生产速度,一开始queue是空的,一段时间后queue就变满了,输出结果正说明了这一点。如果将两个时间调换,则结果相反,queue永远不会满,甚至只有1个值,因为只要进去就被消费了。
(2)消费者程序是通过“while”来推动不断执行的,何时结束?上例中通过在queue中增加None的形式告诉消费者,生产者已经结束了,消费者也可以结束了。但消费者有多个,到底由哪个消费者得到None?为解决这个问题,上例中在消费者中先判断当前取出的是不是None,如果是,则先在queue里插入一个None,然后再break当前这个消费者线程,最后的结果是所有的消费者线程都退出了,但queue中还剩下None没有被取出。因此在程序的后面增加了一个for循环来挨个把queue中的元素取出,否则最后的q.join()将永远阻塞,程序无法往下执行。
(3)程序中每一个q.get()后面都跟有一个q.task_done(),其作用指举兆是从queue中取出一个元素就给q.join()发送一个信息,否则q.join()将永远处于阻塞状态,直到所有queue元素都被取出。

多线程“生产者-消费者”模式一般性结构图

‘拾’ python 新浪微博爬虫,求助

0x00. 起因
因为参加学校大学生创新竞赛,研究有关微博博文表达的情绪,需要大量微博博文,而网上无论是国内的某度、csdn,还是国外谷歌、gayhub、codeproject等都找不到想要的程序,没办法只能自己写一个程序了。
ps.在爬盟找到类似的程序,但是是windows下的,并且闭源,而且最终爬取保存的文件用notepad++打开有很多奇怪的问题,所以放弃了。
0x01. 基础知识
本程序由Python写成,所以基本的python知识是必须的。另外,如果你有一定的计算机网络基础,在前期准备时会有少走很多弯路。
对于爬虫,需要明确几点:
1. 对爬取对象分类,可以分为以下几种:第一种是不需要登录的,比如博主以前练手时爬的中国天气网,这种网页爬取难度较低,建议爬虫新手爬这类网页;第二种是需要登录的,如豆瓣、新浪微博,这些网页爬取难度较高;第三种独立于前两种,你想要的信息一般是动态刷新的,如AJAX或内嵌资源,这种爬虫难度最大,博主也没研究过,在此不细举(据同学说淘宝的商品评论就属于这类)。
2. 如果同一个数据源有多种形式(比如电脑版、手机版、客户端等),优先选取较为“纯净的”展现。比如新浪微博,有网页版,也有手机版,而且手机版可以用电脑浏览器访问,这时我优先选手机版新浪微博。
3. 爬虫一般是将网页下载到本地,再通过某些方式提取出感兴趣的信息。也就是说,爬取网页只完成了一半,你还要将你感兴趣的信息从下载下来的html文件中提取出来。这时就需要一些xml的知识了,在这个项目中,博主用的是XPath提取信息,另外可以使用XQuery等等其他技术,详情请访问w3cschool。
4. 爬虫应该尽量模仿人类,现在网站反爬机制已经比较发达,从验证码到禁IP,爬虫技术和反爬技术可谓不断博弈。
0x02. 开始
决定了爬虫的目标之后,首先应该访问目标网页,明确目标网页属于上述几种爬虫的哪种,另外,记录为了得到感兴趣的信息你需要进行的步骤,如是否需要登录,如果需要登录,是否需要验证码;你要进行哪些操作才能获得希望得到的信息,是否需要提交某些表单;你希望得到的信息所在页面的url有什么规律等等。
以下博文以博主项目为例,该项目爬取特定新浪微博用户从注册至今的所有微博博文和根据关键词爬取100页微博博文(大约1000条)。
0x03. 收集必要信息
首先访问目标网页,发现需要登录,进入登录页面如下新浪微博手机版登录页面
注意url后半段有很多形如”%xx”的转义字符,本文后面将会讲到。
从这个页面可以看到,登录新浪微博手机版需要填写账号、密码和验证码。
这个验证码是近期(本文创作于2016.3.11)才需要提供的,如果不需要提供验证码的话,将有两种方法进行登录。
第一种是填写账号密码之后执行js模拟点击“登录”按钮,博主之前写过一个Java爬虫就是利用这个方法,但是现在找不到工程了,在此不再赘述。
第二种需要一定HTTP基础,提交包含所需信息的HTTP POST请求。我们需要Wireshark 工具来抓取登录微博时我们发出和接收的数据包。如下图我抓取了在登录时发出和接收的数据包Wireshark抓取结果1
在搜索栏提供搜索条件”http”可得到所有http协议数据包,右侧info显示该数据包的缩略信息。图中蓝色一行是POST请求,并且info中有”login”,可以初步判断这个请求是登录时发出的第一个数据包,并且这个180.149.153.4应该是新浪微博手机版登录认证的服务器IP地址,此时我们并没有任何的cookie。
在序号为30是数据包中有一个从该IP发出的HTTP数据包,里面有四个Set-Cookie字段,这些cookie将是我们爬虫的基础。
Wireshark抓取结果2
早在新浪微博服务器反爬机制升级之前,登录是不需要验证码的,通过提交POST请求,可以拿到这些cookie,在项目源码中的TestCookie.py中有示例代码。
ps.如果没有wireshark或者不想这么麻烦的话,可以用浏览器的开发者工具,以chrome为例,在登录前打开开发者工具,转到Network,登录,可以看到发出和接收的数据,登录完成后可以看到cookies,如下图chrome开发者工具
接下来访问所需页面,查看页面url是否有某种规律。由于本项目目标之一是获取某用户的全部微博,所以直接访问该用户的微博页面,以央视新闻 为例。
央视新闻1
图为央视新闻微博第一页,观察该页面的url可以发现,新浪微博手机版的微博页面url组成是 “weibo.cn/(displayID)?page=(pagenum)” 。这将成为我们爬虫拼接url的依据。
接下来查看网页源码,找到我们希望得到的信息的位置。打开浏览器开发者工具,直接定位某条微博,可以发现它的位置,如下所示。
xpath
观察html代码发现,所有的微博都在<div>标签里,并且这个标签里有两个属性,其中class属性为”c”,和一个唯一的id属性值。得到这个信息有助于将所需信息提取出来。
另外,还有一些需要特别注意的因素
* 微博分为原创微博和转发微博
* 按照发布时间至当前时间的差距,在页面上有”MM分钟前”、”今天HH:MM”、”mm月dd日 HH:MM”、”yyyy-mm-dd HH:MM:SS”等多种显示时间的方式* 手机版新浪微博一个页面大约显示10条微博,所以要注意对总共页数进行记录以上几点都是细节,在爬虫和提取的时候需要仔细考虑。
0x04. 编码
1.爬取用户微博
本项目开发语言是Python 2.7,项目中用了一些第三方库,第三方库可以用pip的方法添加。
既然程序自动登录的想法被验证码挡住了,想要访问特定用户微博页面,只能使用者提供cookies了。
首先用到的是Python的request模块,它提供了带cookies的url请求。
import request
print request.get(url, cookies=cookies).content使用这段代码就可以打印带cookies的url请求页面结果。
首先取得该用户微博页面数,通过检查网页源码,查找到表示页数的元素,通过XPath等技术提取出页数。
页数
项目使用lxml模块对html进行XPath提取。
首先导入lxml模块,在项目里只用到了etree,所以from lxml import etree
然后利用下面的方法返回页数
def getpagenum(self):
url = self.geturl(pagenum=1)
html = requests.get(url, cookies=self.cook).content # Visit the first page to get the page number.
selector = etree.HTML(html)
pagenum = selector.xpath('//input[@name="mp"]/@value')[0]
return int(pagenum)
接下来就是不断地拼接url->访问url->下载网页。
需要注意的是,由于新浪反爬机制的存在,同一cookies访问页面过于“频繁”的话会进入类似于“冷却期”,即返回一个无用页面,通过分析该无用页面发现,这个页面在特定的地方会出现特定的信息,通过XPath技术来检查这个特定地方是否出现了特定信息即可判断该页面是否对我们有用。
def ispageneeded(html):
selector = etree.HTML(html)
try:
title = selector.xpath('//title')[0]
except:
return False
return title.text != '微博广场' and title.text != '微博'
如果出现了无用页面,只需简单地重新访问即可,但是通过后期的实验发现,如果长期处于过频访问,返回的页面将全是无用页面,程序也将陷入死循环。为了避免程序陷入死循环,博主设置了尝试次数阈值trycount,超过这个阈值之后方法自动返回。
下面代码片展示了单线程爬虫的方法。
def startcrawling(self, startpage=1, trycount=20):
attempt = 0
try:
os.mkdir(sys.path[0] + '/Weibo_raw/' + self.wanted)except Exception, e:
print str(e)
isdone = False
while not isdone and attempt < trycount:
try:
pagenum = self.getpagenum()
isdone = True
except Exception, e:
attempt += 1
if attempt == trycount:
return False
i = startpage
while i <= pagenum:
attempt = 0
isneeded = False
html = ''
while not isneeded and attempt < trycount:
html = self.getpage(self.geturl(i))
isneeded = self.ispageneeded(html)
if not isneeded:
attempt += 1
if attempt == trycount:
return False
self.savehtml(sys.path[0] + '/Weibo_raw/' + self.wanted + '/' + str(i) + '.txt', html)print str(i) + '/' + str(pagenum - 1)
i += 1
return True
考虑到程序的时间效率,在写好单线程爬虫之后,博主也写了多线程爬虫版本,基本思想是将微博页数除以线程数,如一个微博用户有100页微博,程序开10个线程,那么每个线程只负责10个页面的爬取,其他基本思想跟单线程类似,只需仔细处理边界值即可,在此不再赘述,感兴趣的同学可以直接看代码。另外,由于多线程的效率比较高,并发量特别大,所以服务器很容易就返回无效页面,此时trycount的设置就显得更重要了。博主在写这篇微博的时候,用一个新的cookies,多线程爬取现场测试了一下爬取北京邮电大学的微博,3976条微博全部爬取成功并提取博文,用时仅15s,实际可能跟cookies的新旧程度和网络环境有关,命令行设置如下,命令行意义在项目网址里有说明python main.py _T_WM=xxx; SUHB=xxx; SUB=xxx; gsid_CTandWM=xxx u bupt m 20 20爬取的工作以上基本介绍结束,接下来就是爬虫的第二部分,解析了。由于项目中提供了多线程爬取方法,而多线程一般是无序的,但微博博文是依靠时间排序的,所以项目采用了一种折衷的办法,将下载完成的页面保存在本地文件系统,每个页面以其页号为文件名,待爬取的工作结束后,再遍历文件夹内所有文件并解析。
通过前面的观察,我们已经了解到微博博文存在的标签有什么特点了,利用XPath技术,将这个页面里所有有这个特点的标签全部提取出来已经不是难事了。
在这再次提醒,微博分为转发微博和原创微博、时间表示方式。另外,由于我们的研究课题仅对微博文本感兴趣,所以配图不考虑。
def startparsing(self, parsingtime=datetime.datetime.now()):
basepath = sys.path[0] + '/Weibo_raw/' + self.uidfor filename in os.listdir(basepath):
if filename.startswith('.'):
continue
path = basepath + '/' + filename
f = open(path, 'r')
html = f.read()
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
weibo = Weibo()
weibo.id = item.xpath('./@id')[0]
cmt = item.xpath('./div/span[@class="cmt"]')if len(cmt) != 0:
weibo.isrepost = True
weibo.content = cmt[0].text
else:
weibo.isrepost = False
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
weibo.content += ctt.text
for a in ctt.xpath('./a'):
if a.text is not None:
weibo.content += a.text
if a.tail is not None:
weibo.content += a.tail
if len(cmt) != 0:
reason = cmt[1].text.split(u'\xa0')
if len(reason) != 1:
weibo.repostreason = reason[0]
ct = item.xpath('./div/span[@class="ct"]')[0]
time = ct.text.split(u'\xa0')[0]
weibo.time = self.gettime(self, time, parsingtime)self.weibos.append(weibo.__dict__)
f.close()
方法传递的参数parsingtime的设置初衷是,开发前期爬取和解析可能不是同时进行的(并不是严格的“同时”),微博时间显示是基于访问时间的,比如爬取时间是10:00,这时爬取到一条微博显示是5分钟前发布的,但如果解析时间是10:30,那么解析时间将错误,所以应该讲解析时间设置为10:00。到后期爬虫基本开发完毕,爬取工作和解析工作开始时间差距降低,时间差将是爬取过程时长,基本可以忽略。
解析结果保存在一个列表里,最后将这个列表以json格式保存到文件系统里,删除过渡文件夹,完成。
def save(self):
f = open(sys.path[0] + '/Weibo_parsed/' + self.uid + '.txt', 'w')jsonstr = json.mps(self.weibos, indent=4, ensure_ascii=False)f.write(jsonstr)
f.close()
2.爬取关键词
同样的,收集必要的信息。在微博手机版搜索页面敲入”python”,观察url,研究其规律。虽然第一页并无规律,但是第二页我们发现了规律,而且这个规律可以返回应用于第一页第一页
第二页
应用后第一页
观察url可以发现,对于关键词的搜索,url中的变量只有keyword和page(事实上,hideSearchFrame对我们的搜索结果和爬虫都没有影响),所以在代码中我们就可以对这两个变量进行控制。
另外,如果关键词是中文,那么url就需要对中文字符进行转换,如我们在搜索框敲入”开心”并搜索,发现url如下显示搜索开心
但复制出来却为
http://weibo.cn/search/mblog?hideSearchFrame=&keyword=%E5%BC%80%E5%BF%83&page=1幸好,python的urllib库有qoute方法处理中文转换的功能(如果是英文则不做转换),所以在拼接url前使用这个方法处理一下参数。
另外,考虑到关键词搜索属于数据收集阶段使用的方法,所以在此只提供单线程下载网页,如有多线程需要,大家可以按照多线程爬取用户微博的方法自己改写。最后,对下载下来的网页进行提取并保存(我知道这样的模块设计有点奇怪,打算重(xin)构(qing)时(hao)时再改,就先这样吧)。
def keywordcrawling(self, keyword):
realkeyword = urllib.quote(keyword) # Handle the keyword in Chinese.
try:
os.mkdir(sys.path[0] + '/keywords')
except Exception, e:
print str(e)
weibos = []
try:
highpoints = re.compile(u'[\U00010000-\U0010ffff]') # Handle emoji, but it seems doesn't work.
except re.error:
highpoints = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]')pagenum = 0
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=1' % realkeyword)isneeded = self.ispageneeded(html)
if isneeded:
selector = etree.HTML(html)
try:
pagenum = int(selector.xpath('//input[@name="mp"]/@value')[0])except:
pagenum = 1
for i in range(1, pagenum + 1):
try:
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=%s' % (realkeyword, str(i)))isneeded = self.ispageneeded(html)
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
cmt = item.xpath('./div/span[@class="cmt"]')if (len(cmt)) == 0:
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
text = etree.tostring(ctt, method='text', encoding="unicode")tail = ctt.tail
if text.endswith(tail):
index = -len(tail)
text = text[1:index]
text = highpoints.sub(u'\u25FD', text) # Emoji handling, seems doesn't work.
weibotext = text
weibos.append(weibotext)
print str(i) + '/' + str(pagenum)
except Exception, e:
print str(e)
f = open(sys.path[0] + '/keywords/' + keyword + '.txt', 'w')try:
f.write(json.mps(weibos,indent=4,ensure_ascii=False))except Exception,ex:
print str(ex)
finally:
f.close()
博主之前从未写过任何爬虫程序,为了获取新浪微博博文,博主先后写了3个不同的爬虫程序,有Python,有Java,爬虫不能用了是很正常的,不要气馁,爬虫程序和反爬机制一直都在不断博弈中,道高一尺魔高一丈。
另. 转载请告知博主,如果觉得博主帅的话就可以不用告知了

阅读全文

与python多线程爬虫实例相关的资料

热点内容
安卓怎么换相机 浏览:931
华为相片文件夹怎么删除重复照片 浏览:312
plc编程视频教程大全 浏览:938
直播用哪个app播放背景音乐 浏览:850
点歌机系统app在哪里下载 浏览:609
javadate类型转换string 浏览:694
RPG游戏解压后乱码 浏览:988
无线通信的几个密钥算法 浏览:644
王者荣耀app数据修复在哪里 浏览:429
基于单片机饮水机温度控制系统的设计 浏览:455
c中委托被编译后的结构 浏览:152
飞燕app怎么注销账号 浏览:895
cad命令缩小 浏览:154
linux发展史 浏览:629
服务器选用什么CPU比较好 浏览:334
明星怎么宣传安卓 浏览:953
8255芯片编程 浏览:65
java文件bat运行 浏览:747
java常见笔试 浏览:529
360程序员模式 浏览:363