导航:首页 > 编程语言 > python矩阵的逆语法

python矩阵的逆语法

发布时间:2023-04-14 00:02:40

python怎么实现矩阵的除法

1、首先打开pycharm软件段哗,新建一个python文件并导入握茄行numpy库。

Ⅱ Python解决矩阵问题

下面是基于python3.4的数组矩阵输入方法:

1.import numpy as np
2.arr = [1,2,3,4,5,6,7,8,9]
3.matrix_a = np.array(arr)2.
4.手动定义一个空数组:arr =[],链表数组:a = [1,2,[1,2,3]]。

Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。

Python是纯粹的自由软件,源代码和解释器CPython遵循GPL(GNUGeneral Public License)协议[2]。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。

Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中[3]有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

7月20日,IEEE发布2017年编程语言排行榜:Python高居首位。

Ⅲ 用Python实现三阶矩阵的求逆

你好,下面是一个对应的三阶矩阵求逆的代码

importwarnings
warnings.filterwarnings("ignore")
matrix1=[
[1,2,0,0],
[3,4,0,0],
[0,0,4,1],
[0,0,3,2],
]
matrix2=[
[1,0,-1,2,1],
[3,2,-3,5,-3],
[2,2,1,4,-2],
[0,4,3,3,1],
[1,0,8,-11,4],
]
matrix3=[
[1,0,-1,2,1,0,2],
[1,2,-1,3,1,-1,4],
[2,2,1,6,2,1,6],
[-1,4,1,4,0,0,0],
[4,0,-1,21,9,9,9],
[2,4,4,12,5,6,11],
[7,-1,-4,22,7,8,18],
]

defstep0(m):
n=len(m)
l=[]
foriinrange(0,n):
l.append([])
forjinrange(0,n):
ifi==j:
l[i].append(1)
else:
l[i].append(0)
returnl
defstep1(m):
n=len(m)
"""交换操作记录数组swap"""
swap=[]
l=[]
foriinrange(0,n):
swap.append(i)
l.append([])
forjinrange(0,n):
l[i].append(0)
"""对每一列进行操作"""
foriinrange(0,n):
max_row=m[i][i]
row=i
forjinrange(i,n):
ifm[j][i]>=max_row:
max_row=m[j][i]
#globalrow
row=j
swap[i]=row
"""交换"""
ifrow!=i:
forjinrange(0,n):
m[i][j],m[row][j]=m[row][j],m[i][j]
"""消元"""
forjinrange(i+1,n):
ifm[j][i]!=0:
l[j][i]=m[j][i]/m[i][i]
forkinrange(0,n):
m[j][k]=m[j][k]-(l[j][i]*m[i][k])
return(swap,m,l)
defstep2(m):
n=len(m)
long=len(m)-1
l=[]
foriinrange(0,n):
l.append([])
forjinrange(0,n):
l[i].append(0)
foriinrange(0,n-1):
forjinrange(0,long-i):
ifm[long-i-j-1][long-i]!=0andm[long-i][long-i]!=0:
l[long-i-j-1][long-i]=m[long-i-j-1][long-i]/m[long-i][long-i]
forkinrange(0,n):
m[long-i-j-1][k]=m[long-i-j-1][k]-l[long-i-j-1][long-i]*m[long-i][k]

return(m,l)
defstep3(m):
n=len(m)
l=[]
foriinrange(0,n):
l.append(m[i][i])
returnl

defgauss(matrix):
n=len(matrix)
new=step0(matrix)
(swap,matrix1,l1)=step1(matrix)
(matrix2,l2)=step2(matrix1)
l3=step3(matrix2)
foriinrange(0,n):
ifswap[i]!=i:
new[i],new[swap[i]]=new[swap[i]],new[i]
forjinrange(i+1,n):
forkinrange(0,n):
ifl1[j][i]!=0:
new[j][k]=new[j][k]-l1[j][i]*new[i][k]
foriinrange(0,n-1):
forjinrange(0,n-i-1):
ifl2[n-1-i-j-1][n-1-i]!=0:
forkinrange(0,n):
new[n-1-i-j-1][k]=new[n-1-i-j-1][k]-l2[n-1-i-j-1][n-i-1]*new[n-1-i][k]
foriinrange(0,n):
forjinrange(0,n):
new[i][j]=new[i][j]/l3[i]
returnnew
x1=gauss(matrix1)
x2=gauss(matrix2)
x3=gauss(matrix3)
print(x1)
print(x2)
print(x3)

Ⅳ 线代--单位矩阵与逆矩阵


单位矩阵的特点是对角线为1(行号等于列号的单元元素值为1 ),其它元素值为0, 是一个方阵,且有 ,当 矩阵的每个行向量与 矩阵的列向量进行乘的时候,由于 矩阵的行向量第 列才有值,所以相当于从 矩阵的列向量中提取第 个元素的值

python的numpy 库初始化一个3*3单位矩阵 np.identity(n = 3)

当存在矩阵 与矩阵 相乘满足条件 ,则称 是矩阵 的逆,记作: 。可逆矩阵一定是方阵,非方阵一定不可逆, 只有方阵才有逆
单位矩与逆矩阵的关系:
矩阵的负幂计山姿算: ,这一类计算应用的很少。
python的numpy 对矩阵 求逆矩阵 : invA = np.linalg.inv(A)

在矩阵系统中,大量的矩阵不存在逆矩阵,但总体而言,可逆矩阵在矩阵系统中还是居多的,只是相比不可逆矩阵而言少的多。
满足可逆条件的矩阵称为 可逆矩阵 ,也叫做 ,意思是这种矩阵是非握唯败常平段颤凡的矩阵,正规的矩阵(regular-matrix);而不可逆矩阵则称为 。

① 对矩阵 而言,若存在逆矩阵 则 唯一
② , 矩阵的逆矩阵的逆还是 ;
反证法证明如下:


④ ,矩阵 的转置的逆等于 的逆的转置; 求证:

Ⅳ 求逆矩阵的方法

求矩阵的逆的三种方法:1.待定系数法、2.伴随矩阵求逆矩阵、3.初等变换求逆矩阵。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

阅读全文

与python矩阵的逆语法相关的资料

热点内容
华为相片文件夹怎么删除重复照片 浏览:312
plc编程视频教程大全 浏览:938
直播用哪个app播放背景音乐 浏览:850
点歌机系统app在哪里下载 浏览:609
javadate类型转换string 浏览:694
RPG游戏解压后乱码 浏览:988
无线通信的几个密钥算法 浏览:644
王者荣耀app数据修复在哪里 浏览:429
基于单片机饮水机温度控制系统的设计 浏览:455
c中委托被编译后的结构 浏览:152
飞燕app怎么注销账号 浏览:895
cad命令缩小 浏览:154
linux发展史 浏览:629
服务器选用什么CPU比较好 浏览:334
明星怎么宣传安卓 浏览:953
8255芯片编程 浏览:65
java文件bat运行 浏览:747
java常见笔试 浏览:529
360程序员模式 浏览:363
AQS算法的查询树构造 浏览:329