㈠ 词云图怎么做
词云图做法如下:
1.第一种方法:借助在线工具,也就是在网页上就能完成词云图的制作和输出。目前支持在线制作词云图的网站有:WordArt、Wordiout、微词云、易词云、美寄词云等;
2.第二种方法:直接使用有词云图制作功能的软件,比如:FineBI、Tableau、SmartBI、BDP等,词云图只是这些软件的一个小功能;
3.第三种方法:通过编程来实现词云图,常用的编程语言有python和R。对于有编程技术基础的朋友,可以自行用Python等制作词云图,对于没有编程基础的朋友采取前两种方法,这两种方法操作起来比较容易。
㈡ python可视化神器——pyecharts库
无意中从今日头条中看到的一篇文章,可以生成简单的图表。据说一些大数据开发们也是经常用类似的图表库,毕竟有现成的,改造下就行,谁会去自己造轮子呢。
pyecharts是什么?
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是网络开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒, pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图 。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。
安装很简单:pip install pyecharts
如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,简直不要太强大。
参考自pyecharts官方文档: http://pyecharts.org
首先开始来绘制你的第一个图表
使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可
add() 主要方法,用于添加图表的数据和设置各种配置项
render() 默认将会在根目录下生成一个 render.html 的文件,文件用浏览器打开。
使用主题
自 0.5.2+ 起,pyecharts 支持更换主体色系
使用 pyecharts-snapshot 插件
如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。
安装 phantomjs $ npm install -g phantomjs-prebuilt
安装 pyecharts-snapshot $ pip install pyecharts-snapshot
调用 render 方法 bar.render(path='snapshot.png') 文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。
图形绘制过程
基本上所有的图表类型都是这样绘制的:
chart_name = Type() 初始化具体类型图表。
add() 添加数据及配置项。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 数据一般为两个列表(长度一致)。如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。
多次显示图表
从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。如果使是 Numpy 或者 Pandas,可以参考这个示例
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加 pythonic 的做法。直接调用本身实例就可以了。
比如这样
还有这样
如果使用的是自定义类,直接调用自定义类示例即可
图表配置
图形初始化
通用配置项
xyAxis:平面直角坐标系中的 x、y 轴。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡尔坐标系 X,Y,Z 轴配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)
visualMap:是视觉映射组件,用于进行‘视觉编码’,也就是将数据映射到视觉元素(视觉通道)
markLine&markPoint:图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种。(Bar、Line、Kline)
tooltip:提示框组件,用于移动或点击鼠标时弹出数据内容
toolbox:右侧实用工具箱
图表详细
Bar(柱状图/条形图)
Bar3D(3D 柱状图)
Boxplot(箱形图)
EffectScatter(带有涟漪特效动画的散点图)
Funnel(漏斗图)
Gauge(仪表盘)
Geo(地理坐标系)
GeoLines(地理坐标系线图)
Graph(关系图)
HeatMap(热力图)
Kline/Candlestick(K线图)
Line(折线/面积图)
Line3D(3D 折线图)
Liquid(水球图)
Map(地图)
Parallel(平行坐标系)
Pie(饼图)
Polar(极坐标系)
Radar(雷达图)
Sankey(桑基图)
Scatter(散点图)
Scatter3D(3D 散点图)
ThemeRiver(主题河流图)
TreeMap(矩形树图)
WordCloud(词云图)
用户自定义
Grid 类:并行显示多张图
Overlap 类:结合不同类型图表叠加画在同张图上
Page 类:同一网页按顺序展示多图
Timeline 类:提供时间线轮播多张图
统一风格
注:pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。
地图文件被分成了三个 Python 包,分别为:
全球国家地图:
echarts-countries-pypkg
中国省级地图:
echarts-china-provinces-pypkg
中国市级地图:
echarts-china-cities-pypkg
直接使用python的pip安装
但是这里大家一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。
显示如下:
总得来说,这是一个非常强大的可视化库,既可以集成在flask、Django开发中,也可以在做数据分析的时候单独使用,实在是居家旅行的必备神器啊
㈢ python 制作词云图需要准备啥
分词可以使用jieba,词云图绘制可以用echats或者Matplotlib
㈣ python画词云图体现哪方面的计算思维
您好,Python画词云图体现的是计算机程序的思维。词云图是一种可视化技术,可以将文本数据可视化,从而更容易理解和探索。Python可以通过词云图来表示文本数据,从而更好地理解和探索文本数据。
Python的词云图可以帮助计算机程序员更好地理解文本蚂物数据,从而更好地构建计算机程序闷罩液。词云图可以帮助计算机程序员发现文本数据中的重要信息,从而更好地分析文本数据,并且可以更好地构建出更有效的计算机程序。
Python的词云图可以帮助计算机程序员更好地理解文本数据,从而更好地构建计算机程序。闷世词云图可以帮助计算机程序员发现文本数据中的重要信息,从而更好地分析文本数据,并且可以更好地构建出更有效的计算机程序。
Python的词云图可以帮助计算机程序员更好地理解文本数据,从而更好地构建计算机程序。词云图可以帮助计算机程序员发现文本数据中的重要信息,从而更好地分析文本数据,并且可以更好地构建出更有效的计算机程序。
Python的词云图可以帮助计算机程序员更好地理解文本数据,从而更好地构建计算机程序。词云图可以帮助计算机程序员发现文本数据中的重要信息,从而更好地分析文本数据,并且可
㈤ python3.7生成的词云,显示成功,却没有图片
根据你的代码,你生成的词云图片文件名字叫做aaaaa.png,打开你存储python文件的文件夹,在那里面找到aaaaa.png这个图片文件,打开就是生成的词云了
㈥ 用python画一个国庆词云图
使用wordcloud模块。
㈦ 在自然语言文本处理的Python库中,什么根据其在文本中的出现频率设计大小,不同
在自然语言文本处理的Python库中,通常使用词云库WordCloud来根据词语在文本中的出现频率设计大小。
WordCloud是一个用于生成词云图的Python库,可以将文本中的词语转换为词云图。词云图中,每个词语的大小与其在文本中的出现频率成正比,出现频率越高的空做缓词语会显示得更大,从而更加醒目。
生成词云图的基本流程是,首先将文本分词,并统计每个词语在文本中的出现频率,然后使用WordCloud库生成词云图。在生成词云图时,可以设置词云图的大小、颜色、字体、形状等参数,斗模从而生成不同风格的词云图。
词云图在文本可视化、文本分析等方面有广泛的应用,可以用来展示文本中的胡慧重要词语或主题,帮助人们更直观地理解文本内容。
㈧ python词云图片保存在哪
wordcloud.to_file。
将生成的词云保存为output1.png图片文件,保存出到wordcloud.to_file图云.png文件夹中。
词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。基于Python的词云生成类库,很好用,而且功能强大。
㈨ Python 画好看的云词图
词云图是数据分析中比较常见的一种可视化手段。词云图,也叫文字云,是对文本中出现频率较高的 关键词 予以视觉化的展现,出现越多的词,在词云图中展示越显眼。词云图过滤掉大量低频低质的文本信息,因此只要一眼扫过文本就可 领略文章主旨 。
例如👆上面这张图,看一眼就知道肯定是新华网的新闻。
那生成一张词云图的主要步骤有哪些?这里使用 Python 来实现,主要分三步:
首先是“结巴”中文分词 jieba 的安装。
对于英文文本,word_cloud 可以直接对文本源生成词云图。但是对中文的支持没有那么给力,所以需要先使用 jieba 对中文文本进行分词,把文章变成词语,然后再生成词云图。例如:
jieba.cut 分词:方法接受三个输入参数,sentence 需要分词的字符串;cut_all 用来控制是否采用全模式;HMM 用来控制是否使用 HMM 模型。
jieba.cut_for_search 分词:方法接受两个参数,sentence 需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细。
jieba.analyse.textrank 使用 TextRank 算法从句子中提取关键词。
然后安装 wordcloud 词云图库。
如果执行上面命令后,显示 success,那么恭喜你,安装成功了。
我就遇到了 Failed building wheel for wordcloud 的错误。于是先安装 xcode-select, 再安装 wordcloud 即可(无需安装 Xcode)。
wordcloud 库把词云当作一个 WordCloud 对象,wordcloud.WordCloud() 代表一个文本对应的词云,可以根据文本中词语出现的频率等参数绘制词云,绘制词云的形状、尺寸和颜色。
1、首先导入文本数据并进行简单的文本处理
2、分词
3、设置遮罩
注意:
1、默认字体不支持中文,如果需要显示中文,需要设置中文字体,否则会乱码。
2、设置遮罩时,会自动将图片非白色部分填充,且图片越清晰,运行速度越快
其中 WordCloud 是云词图最重要的对象,其主要参数描述如下:
效果如下图:
上小结是将文章中所有内容进行分词,输出了所有词,但很多时候,我们有进一步的需求。例如:
1、只需要前 100 个关键词就够了。
2、不需要五颜六色的词语,应与遮罩图片颜色一致。
100个关键词,我们在分词时使用 TextRank 算法从句子中提取关键词。
遮罩颜色可通过设置 WordCloud 的 color_func 属性。
最终效果如下: