这样会简闭槐族单点
public class arrayc
{
public static void main(String args[])
{
int i,max,min;
int a[]={58,25,65,23,56,58,98,154};
min=max=a[0];
System.out.println("轿弊elements in array a are");
for(i=0;i<a.length;i++)
{
System.out.print(a[i]+" "明逗);
if(a[i]>max)
max=a[i];
if(a[i]<min)
min=a[i];
}
System.out.println("\n the max value is"+max);
System.out.println("the min value is"+min);
}
}
㈡ java快速排序简单代码
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏誉渣宏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序梁灶通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒庆册泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:
快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
var len = arr. length ,
partitionIndex ,
left = typeof left != 'number' ? 0 : left ,
right = typeof right != 'number' ? len - 1 : right ;
if ( left
㈢ java面试题 很急 谢谢
2, 归并排序(merge sort)体现了分治的思想,即将一个待排序数组分为两部分,对这两个部分进行归并排序,排序后,再对两个已经排序好的数组进行合并。这种思想可以用递归方式很容易实现。归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
实现代码如下:
#include <stdio.h>
#include "common.h"
void merge(int data[], int p, int q, int r)
{
int i, j, k, n1, n2;
n1 = q - p + 1;
n2 = r - q;
int L[n1];
int R[n2];
for(i = 0, k = p; i < n1; i++, k++)
L[i] = data[k];
for(i = 0, k = q + 1; i < n2; i++, k++)
R[i] = data[k];
for(k = p, i = 0, j = 0; i < n1 && j < n2; k++)
{
if(L[i] > R[j])
{
data[k] = L[i];
i++;
}
else
{
data[k] = R[j];
j++;
}
}
if(i < n1)
{
for(j = i; j < n1; j++, k++)
data[k] = L[j];
}
if(j < n2)
{
for(i = j; i < n2; i++, k++)
data[k] = R[i];
}
}
void merge_sort(int data[], int p, int r)
{
if(p < r)
{
int q = (p + r) / 2;
merge_sort(data, p, q);
merge_sort(data, q + 1, r);
merge(data, p, q, r);
}
}
void test_merge_sort()
{
int data[] = {44, 12, 145, -123, -1, 0, 121};
printf("-------------------------------merge sort----------------------------\n");
out_int_array(data, 7);
merge_sort(data, 0, 6);
out_int_array(data, 7);
}
int main()
{
test_merge_sort();
return 0;
}
4.对于有n个结点的线性表(e0,e1,…,en-1),将结点中某些数据项的值按递增或递减的次序,重新排列线性表结点的过程,称为排序。排序时参照的数据项称为排序码,通常选择结点的键值作为排序码。
若线性表中排序码相等的结点经某种排序方法进行排序后,仍能保持它们在排序之前的相对次序,称这种排序方法是稳定的;否则,称这种排序方法是不稳定的。
在排序过程中,线性表的全部结点都在内存,并在内存中调整它们在线性表中的存储顺序,称为内排序。在排序过程中,线性表只有部分结点被调入内存,并借助内存调整结点在外存中的存放顺序的排序方法成为外排序。
下面通过一个表格简单介绍几种常见的内排序方法,以及比较一下它们之间的性能特点。
排序方法
简介
平均时间
最坏情况
辅助存储
是否稳定
简单排序
选择排序
反复从还未排好序的那部分线性表中选出键值最小的结点,并按从线性表中选出的顺序排列结点,重新组成线性表。直至未排序的那部分为空,则重新形成的线性表是一个有序的线性表。
O( )
O( )
O(1)
不稳定
直接插入排序
假设线性表的前面I个结点序列e0,e1,…,en-1是已排序的。对结点在这有序结点ei序列中找插入位置,并将ei插入,而使i+1个结点序列e0,e1,…,ei也变成排序的。依次对i=1,2,…,n-1分别执行这样的插入步骤,最终实现线性表的排序。
O( )
O( )
O(1)
稳定
冒泡排序
对当前还未排好序的范围内的全部结点,自上而下对相邻的两个结点依次进行比较和调整,让键值大的结点往下沉,键值小的结点往上冒。即,每当两相邻比较后发现它们的排列顺序与排序要求相反时,就将它们互换。
O( )
O( )
O(1)
稳定
希尔排序
对直接插入排序一种改进,又称“缩小增量排序”。先将整个待排序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。
kn ln n
O( )
O(logn)
不稳定
快速排序
对冒泡排序的一种本质的改进。通过一趟扫视后,使待排序序列的长度能大幅度的减少。在一趟扫视后,使某个结点移到中间的正确位置,并使在它左边序列的结点的键值都比它的小,而它右边序列的结点的键值都不比它的小。称这样一次扫视为“划分”。每次划分使一个长序列变成两个新的较小子序列,对这两个小的子序列分别作同样的划分,直至新的子序列的长度为1使才不再划分。当所有子序列长度都为1时,序列已是排好序的了。
O(nlogn)
O( )
O(logn)
不稳定
堆排序
一种树形选择排序,是对直接选择排序的有效改进。一个堆是这样一棵顺序存储的二叉树,它的所有父结点(e[i])的键值均不小于它的左子结点(e[2*i+1])和右子结点(e[2*i+2])的键值。初始时,若把待排序序列的n个结点看作是一棵顺序存储的二叉树,调整它们的存储顺序,使之成为一个堆,这时堆的根结点键值是最大者。然后将根结点与堆的最后一个结点交换,并对少了一个结点后的n-1结点重新作调整,使之再次成为堆。这样,在根结点得到结点序列键值次最大值。依次类推,直到只有两个结点的堆,并对它们作交换,最后得到有序的n个结点序列。
O(nlogn)
O(nlogn)
O(1)
不稳定
归并排序
将两个或两个以上的有序子表合并成一个新的有序表。对于两个有序子表合并一个有序表的两路合并排序来说,初始时,把含n个结点的待排序序列看作有n个长度都为1的有序子表所组成,将它们依次两两合并得到长度为2的若干有序子表,再对它们作两两合并……直到得到长度为n的有序表,排序即告完成。
O(nlogn)
O(nlogn)
O(n)
稳定
后面根据各种排序算法,给出了C语言的实现,大家在复习的时候可以做下参考。
u 选择排序
void ss_sort(int e[], int n)
{ int i, j, k, t;
for(i=0; i< n-1; i++) {
for(k=i, j=i+1; j<n; j++)
if(e[k]>e[j]) k=j;
if(k!=i) {
t=e[i]; e[i]=e[k]; e[k]=t;
}
}
}
u 直接插入排序
void si_sort(int e[], int n)
{ int i, j, t;
for(i=0; i< n; i++) {
for(t=e[i], j=i-1; j>=0&&t<e[j]; j--)
e[j+1]=e[j];
e[j+1]=t;
}
}
u 冒泡排序
void sb_sort(int e[], int n)
{ int j, p, h, t;
for(h=n-1; h>0; h=p) {
for(p=j=0; j<h; j++)
if(e[j]>e[j+1]) {
t=e[j]; e[j]=e[j+1]; e[j+1]=t;
p=j;
}
}
}
u 希尔排序
void shell(int e[], int n)
{ int j, k, h, y;
for(h=n/2; h>0; h=h/2)
for(j=h; j<n; j++) {
y=e[j];
for(k=j-h; k>0&&y<e[k]; k-=h)
e[k+h]=e[k];
e[k+h]=y;
}
}
u 堆排序
void sift(e, n, s)
int e[];
int n;
int s;
{ int t, k, j;
t=e[s];
k=s; j=2*k+1;
while(j<n) {
if(j<n-1&&e[j]<e[j+1])
j++;
if(t<e[j]) {
e[k]=e[j];
k=j;
j=2*k+1;
}else break;
}
e[k]=t;
}
void heapsorp (int e[], int n)
{ int i, k, t;
for(i=n/2-1; i>=0; i--)
sift(e, n, i);
for(k=n-1; k>=1; k--) {
t=e[0]; e[0]=e[k]; e[k]=t;
sift(e, k, 0);
}
}
u 快速排序
void r_quick(int e[], int low, int high)
{ int i, j, t;
if(low<high) {
i=low; j=high; t=e[low];
while(i<j) {
while (i<j&&e[j]>t) j--;
if(i<j) e[I++]=e[j];
while (i<j&&e[i]<=t) i++;
if(I<j) e[j--]=e[i];
}
e[i]=t;
r_quick(e,low,i-1);
r_quick(w,i+1,high);
}
}
另外,外排序是对大型文件的排序,待排序的记录存储在外存中,在排序过程中,内存只存储文件的一部分记录,整个排序过程需进行多次的内外存间的交换。
*** 查找
查找就是在按某种数据结构形式存储的数据集合中,找出满足指定条件的结点。
按查找的条件分类,有按结点的关键码查找、关键码以外的其他数据项查找或其他数据项的组合查找等。按查找数据在内存或外存,分内存查找和外存查找。按查找目的,查找如果只是为了确定指定条件的结点存在与否,成为静态查找;查找是为确定结点的插入位置或为了删除找到的结点,称为动态查找。
这里简单介绍几种常见的查找方法。
u 顺序存储线性表的查找
这是最常见的查找方式。结点集合按线性表组织,采用顺序存储方式,结点只含关键码,并且是整数。如果线性表无序,则采用顺序查找,即从线性表的一端开始逐一查找。而如果线性表有序,则可以使用顺序查找、二分法查找或插值查找。
u 分块查找
分块查找的过程分两步,先用二分法在索引表中查索引项,确定要查的结点在哪一块。然后,再在相应块内顺序查找。
u 链接存储线性表的查找
对于链接存储线性表的查找只能从链表的首结点开始顺序查找。同样对于无序的链表和有序的链表查找方法不同。
u 散列表的查找
散列表又称杂凑表,是一种非常实用的查找技术。它的原理是在结点的存储位置和它的关键码间建立一个确定的关系,从而让查找码直接利用这个关系确定结点的位置。其技术的关键在于解决两个问题。
I. 找一个好的散列函数
㈣ java编程题,对一组{23,55,-65,89,82,99,128}中的元素从小到大进行排序
1. 插入排序:插入排序基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。
2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。
3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。
4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5. 归并排序:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
你看这个链接,网页链接
希望可以帮到你,望采纳~
㈤ 数据结构 java开发中常用的排序算法有哪些
排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
一、冒泡(Bubble)排序
----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。
二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。
三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。
四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。
七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。
堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。
㈥ java里,几种排序方法各有什么优缺点
一、冒泡排序
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较 a[1]与a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对 a[1]~a[n-1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理n-1轮后a[1]、a[2]、……a[n]就以升序排列了。
优点:稳定;
缺点:慢,每次只能移动相邻两个数据。
二、选择排序
冒泡排序的改进版。
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序是不稳定的排序方法。
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:
①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n- 1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
优点:移动数据的次数已知(n-1次);
缺点:比较次数多。
三、插入排序
已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来 a[x]的位置这就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a)
优点:稳定,快;
缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。
三、缩小增量排序
由希尔在1959年提出,又称希尔排序(shell排序)。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入排序的效果很好。首先取一增量d(d<n),将a[1]、a[1+d]、a[1+2d]……列为第一组,a[2]、a[2+d]、 a[2+2d]……列为第二组……,a[d]、a[2d]、a[3d]……列为最后一组以次类推,在各组内用插入排序,然后取d'<d,重复上述操作,直到d=1。
优点:快,数据移动少;
缺点:不稳定,d的取值是多少,应取多少个不同的值,都无法确切知道,只能凭经验来取。
四、快速排序
快速排序是目前已知的最快的排序方法。
已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据 a[x]作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据<a[x],a[k+1]~a[n]中的每一个数据>a[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n] 两组数据进行快速排序。
优点:极快,数据移动少;
缺点:不稳定。
五、箱排序
已知一组无序正整数数据a[1]、a[2]、……a[n],需将其按升序排列。首先定义一个数组x[m],且m>=a[1]、a[2]、……a[n],接着循环n次,每次x[a]++.
优点:快,效率达到O(1)
缺点:数据范围必须为正整数并且比较小
六、归并排序
归并排序是多次将两个或两个以上的有序表合并成一个新的有序表。最简单的归并是直接将两个有序的子表合并成一个有序的表。
归并排序是稳定的排序.即相等的元素的顺序不会改变.如输入记录 1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按输入的顺序.这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输入的顺序排列时很重要.这也是它比快速排序优势的地方.
㈦ java中的算法,一共有多少种,哪几种,怎么分类。
就好比问,汉语中常用写作方法有多少种,怎么分类。
算法按用途分,体现设计目的、有什么特点
算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等等
算法按设计范型分,有分治、动态、贪心、线性、图论、简化等等
作为图灵完备的语言,理论上”Java语言“可以实现所有算法。
“Java的标准库'中用了一些常用数据结构和相关算法.
像apache common这样的java库中又提供了一些通用的算法
㈧ 常见的排序算法哪个效率最高
快速排序法。
Java的排序算法有哪些?
java的排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序:
1.插入排序:直接插入排序、二分法插入排序、希尔排序。
2.选择排序:简单选择排序、堆排序。
3.交换排序:冒泡排序、快速排序。
4.归并排序。
5.基数排序。
java中的算法,一共有多少种,哪几种,怎么分类?
1、算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等。
2、算法按设计范型分,有分治、动态、贪心、线性、图论、简化等。
㈨ Java排序一共有几种
日常操作中,常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。
各类排序方法代码如图:
㈩ JAVA程序经常用到“递归”,“递归”的基本思想是
递归的核心思想是分解。把一个很复杂的问题使用同一个策略将其分解为较简单的问题,如果这个的问题仍然不能解决则再次分解,直到问题能被直接处理为止。
比如求 1+1/2+1/3+...+1/n的和,如果按照我们正常银液搏的思维,就会使用一个循环,把所有的表示式的值加起来,这是最直接的办法。如果使用递归的思维,过程就是这样的,要求1+1/2+1/3+...+1/n的值,可以先求s1=1+1/2+1/3+...+1/(n-1)的值,再用s1加上1/n就是所求的值,而求s1的过程又可以使用上面的分解策略继续分解,最终分解到求1+1/2的值,而这个问题简单到我们可以直接解决,自此问题得到解决。
递归强调的分治的策略,再举个例子,有一种排序算法叫归并排序,其思想是这样的:要对一个无序的数组进行排序,可以将这个数组分解为2个小数组,然后对这两个数组分别排序,再把排好序的两个数组合并。而埋漏这一过程中只有“对两个数组分别排序”不是我们能解决的,但是这个问题可以使用上面的策略进行再次的分解,最后这个问题就被分解到对锋祥2个元素的数组进行排序,而这个问题简单到我们可以直接处理。
上面提到的分解的策略,或者说算法,抽象出来就是我们的函数,因为在这个过程中我们要不同的使用这个策略来不断的分解问题,所以代码上就体现为这个函数会不断的调用自身。还有一点,并不是所有的递归都是可以实现的,或者说有意义的。如果在分解的过程中,问题最终不能分解到一个可以直接解决的问题,则这个过程是没有意义,也就是无限的循环。
具体的代码都不贴了,有兴趣可以网络看看。