❶ 用python如何提取文本文件的特定数据
用csv模块能解决你的问题,或者尝试下面的代码:
withopen(filepath,"r")asfr:
forlineinfr:
line=line.spilt()
printline[3:6]
❷ 怎么用python把*.obj文件里面的3D模型特征提取出来
1,去官网hge.net/下载Assimp放到centos7下,并解压
2,仔细阅读INSTALL文件
3,cmake CMakeLists.txt -G 'Unix Makefiles'
4,make
5,make install
6,检查ls /usr/local/lib/libassimp*或/usr/local/include/assimp
7,准备安装PyAssimp,git clone:hss...
8,确认是否安装python2.7.X
9,python setup.py install 安装完成
接下来就可以测试了
from pyassimp import *
scene = load('feiji1.obj')assert len(scene.meshes)
mesh = scene.meshes[0]assert len(mesh.vertices)
print(mesh.vertices[0])
release(scene)
❸ OpenCV+Python特征提取算法与图像描述符之SIFT / SURF / ORB
算法效果比较博文
用于表示和量化图像的数字列表,简单理解成将图片转化为一个数字列表世灶表示。特征向量中用来描述图片的各种属性的向量称为特征矢量。
参考
是一种算法和方法,输入1个图像,返回多个特征向量(主要用来处理图像的局部,往往会把多个特征向量组成一个一维的向量)。主要用于图像匹配(视觉检测),匹配图像中的物品。
SIFT论文
原理
opencv官网解释
实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。
尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。
其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
对现实中物体的描述一定要在一个十分重要的前提下进行,这个前提就是对自然界建模时的尺度。当用一个机器视觉系统分析未知场景时,计算机没有办法预先知道图像中物体的尺度,因此我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。图像的尺度空间表达指的是图像的所有尺度下的描述。
KeyPoint数据结构解析
SURF论文
原理
opencv官网解释
SURF是SIFT的加速版,它善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。在SIFT中使用DoG对LoG进行近似,而在SURF中使用盒子滤波器对LoG进行近似,这样就可以使用积分图像了(计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关)。总之,SURF最大的特点在于采用了Haar特征以及积分图改团像的概念,大大加快了程序的运行效率。
因为专利原因,OpenCV3.3开核返橘始不再免费开放SIFT\SURF,需要免费的请使用ORB算法
ORB算法综合了FAST角点检测算法和BRIEFF描述符。
算法原理
opencv官方文档
FAST只是一种特征点检测算法,并不涉及特征点的特征描述。
论文
opencv官方文档
中文版
Brief是Binary Robust Independent Elementary Features的缩写。这个特征描述子是由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。
1:不具备旋转不变性。
2:对噪声敏感
3:不具备尺度不变性。
ORB论文
OpenCV官方文档
ORB采用了FAST作为特征点检测算子,特征点的主方向是通过矩(moment)计算而来解决了BRIEF不具备旋转不变性的问题。
ORB还做了这样的改进,不再使用pixel-pair,而是使用9×9的patch-pair,也就是说,对比patch的像素值之和,解决了BRIEF对噪声敏感的问题。
关于计算速度:
ORB是sift的100倍,是surf的10倍。
对图片数据、特征分布的一种统计
对数据空间(bin)进行量化
Kmeans
边缘:尺度问题->不同的标准差 捕捉到不同尺度的边缘
斑点 Blob:二阶高斯导数滤波LoG
关键点(keypoint):不同视角图片之间的映射,图片配准、拼接、运动跟踪、物体识别、机器人导航、3D重建
SIFT\SURF
❹ python处理图片数据
目录
1.机器是如何存储图像的?
2.在Python中读取图像数据
3.从图像数据中提取特征的方法#1:灰度像素值特征
4.从图像数据中提取特征的方法#2:通道的平均像素值
5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。
但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:
机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。
假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。
这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。
下图的尺寸为22 x 16,读者可以通过计算像素数来验证:
图片源于机器学习应用课程
刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?
彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。
因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:
图片源于机器学习应用课程
左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。
请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。
用Python读取图像数据
下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。
下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。
方法#1:灰度像素值特征
从图像创建特征最简单的方法就是将原始的像素用作单独的特征。
考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。
能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。
那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:
下面来用Python绘制图像,并为该图像创建这些特征:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。
但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!
方法#2:通道的平均像素值
在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。
或者,可以使用另一种方法:
生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。
下图可以让读者更清楚地了解这一思路:
这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取边缘特征
请思考,在下图中,如何识别其中存在的对象:
识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?
类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:
笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。
假设图像矩阵如下:
图片源于机器学习应用课程
该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?
当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:
获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。
还有其他各种内核,下面是四种最常用的内核:
图片源于机器学习应用课程
现在回到笔记本,为同一图像生成边缘特征:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
❺ 如何用python实现安全可信特征识别
安全可信特征识别是指通过对数据、文件、应用程序等进行分析,识别出其中的安全可信特征,以判断其是否存在安全风险。Python作为一种高级编程语言,具有丰富的数据分析和处理库,可以用于实现安全可信特征识别。以下是实现的罩败一些步骤:
1、收集数腊谨据:收集需要进行特征识别的数据,包括文件、网络流量、操作系统事件等。
2、数据预处理:对收集的数据进行预处理,包括数据清洗、特征提取、数据归一化等操作。
3、特征选择:根据实际需求,选择合适的特征进行识别。常用的特征包括文件属性、网络协议、进程行为等。
4、建立模型:根据选择的特征,使用机器学物局颤习算法或其他分类算法建立模型,对数据进行分类,并对识别结果进行评估。
5、模型优化:根据实际情况,对模型进行优化,提高准确率和效率。
6、实时监测:将模型应用于实时监测中,及时发现并处理安全事件。实现安全可信特征识别需要综合运用数据分析、机器学习和安全知识等多个领域的知识。
❻ python数据分析时间序列如何提取一个月的数据
python做数据分析时下面就是提取一个月数据的教程1. datetime库
1.1 datetime.date
1) datetime.date.today() 返回今日,输出的类型为date类
import datetime
today = datetime.date.today()
print(today)
print(type(today))
–> 输出的结果为:
2020-03-04
<class 'datetime.date'>
将输出的结果转化为常见数据类型(字符串)
print(str(today))
print(type(str(today)))
date = str(today).split('-')
year,month,day = date[0],date[1],date[2]
print('今日的年份是{}年,月份是{}月,日子是{}号'.format(year,month,day))
–> 输出的结果为:(转化为字符串之后就可以直接进行操作)
2020-03-04
<class 'str'>
今日的年份是2020年,月份是03月,日子是04号
2) datetime.date(年,月,日),获取当前的日期
date = datetime.date(2020,2,29)
print(date)
print(type(date))
–> 输出的结果为:
2020-02-29
<class 'datetime.date'>
1.2 芹喊datetime.datetime
1) datetime.datetime.now()输出当前时间,datetime类
now = datetime.datetime.now()
print(now)
print(type(now))
–> 输出的结果为:(注意秒后面有个不确定尾数)
2020-03-04 09:02:28.280783
<class 'datetime.datetime'>
可通过str()转化为字符串(和上面类似)
print(str(now))
print(type(str(now)))
–> 输出的结果为:(这里也可以跟上面的处理类似分别获得相应的数据,但是也可以使用下面更直接的方法来获取)
2020-03-04 09:04:32.271075
<class 'str'>
2) 通过自带的方法获取年月日,时分秒(这里返回的是int整型数据,注意区别)
now = datetime.datetime.now()
print(now.year,type(now.year))
print(now.month,type(now.month))
print(now.day,type(now.day))
print(now.hour,type(now.hour))
print(now.minute,type(now.minute))
print(now.second,type(now.second))
print(now.date(),type(now.date()))
print(now.date().year,type(now.date().year))
–> 输出的结果为:(首先注意输出中倒数第二个还是上面的纯档datetime.date对象,这里是用来做时间对比的,同时除了这里的datetime.datetime有这种方法,datetime.date对象也有。因为此方法获取second是取的整型数据,自然最后的不确定尾数就被取整处理掉了)
2020 <class 'int'>
3 <class 'int'>
4 <class 'int'>
9 <class 'int'>
12 <class '做首乱int'>
55 <class 'int'>
2020-03-04 <class 'datetime.date'>
2020 <class 'int'>
❼ Python 用Keras训练卷积网络,提取的特征,如何保存,代码如下
可以用
np.savez('xxx.npz',train_labels=train_labels)
加载时用
np.load('xxx.npz')
❽ 怎样用 Python 进行数据分析
做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法
那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等
所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,
之后再学怎么分析。
❾ 教你如何用python6个步骤搞定金融数据挖掘预处理
数据预处理没有标准的流程,通常针对不同的任务和数据集属性的不同而不同。下面就一起看下常用六大步完成数据预处理。
Step 1:导入相关模块
Step 2:获取数据
特征构造
Step 3:处理缺失值
Step 4:分类数据编码
创建虚拟变量
Step 5:划分训练集和测试集
Step 6:特征标准化
数据变换十大秘诀
数据变换[1]是将数据集的每个元素乘以常数;也就是说,将每个数变换为,其中,和都是实数。数据变换将可能改变数据的分布以及数据点的位置。
数据标准化[2](有时称为 z-score 或 standar score)是已重新缩放为平均值为零且标准偏差为1的变量。对于标准化变量,每种情况下的值在标准化变量上的值都表明它与原始变量的均值(或原始变量的标准偏差)的差值。
归一化数据 是将数据缩放到0到1范围内。
Binarizing Data
二值化[3]是将任何实体的数据特征转换为二值化的向量以使分类器算法更高效的过程。在一个简单的示例中,将图像的灰度从0-255光谱转换为0-
1 光谱就是二值化。
Mean Removal
去均值法 是将均值从每一列或特征中移除,使其以零为中心的过程。
One Hot Encoding
独热编码[4]是将分类变量转换为可以提供给ML算法以更好地进行预测的形式的过程。
Label Encoding
标签编码 适用于具有分类变量并将数据转换为数字的数据。
fit
transform
词向量 用于带有标签和数字的数据。此外,词向量可用于提取数据。
获取特征名称
Polynomial Features
多项式特征 用于生成多项式特征和交互特征。它还生成了一个新的特征矩阵数据,该数据是由所有次数小于或等于指定次数的特征的多项式组合组成的。
截距项
填补 (如用均值填补缺失值),它用列或特性数据中的平均值替换缺失的值
❿ 如何提取Python数据
首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata。
?
1
2
3
import numpy as np
import pandas as pd
loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx'))
设置索引字段
在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。
?
1
Loandata = loandata.set_index('member_id')
按行提取信息
第一步是按行提取数据,例如提取某个用户的信息。下面使用ix函数对member_id为1303503的用户信息进行了提取。
?
1
loandata.ix[1303503]
按列提取信息
第二步是按列提取数据,例如提取用户工作年限列的所有信息,下面是具体的代码和提取结果,显示了所有用户的工作年龄信息。
?
1
loandata.ix[:,'emp_length']
按行与列提取信息
第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息,下面是查询member_id为1303503的用户的emp_length信息。
?
1
loandata.ix[1303503,'emp_length']
在前面的基础上继续增加条件,增加一行同时查询两个特定用户的贷款金额信息。具体代码和查询结果如下。结果中分别列出了两个用户的代码金额。
?
1
loandata.ix[[1303503,1298717],'loan_amnt']
在前面的代码后增加sum函数,对结果进行求和,同样是查询两个特定用户的贷款进行,下面的结果中直接给出了贷款金额的汇总值。
?
1
loandata.ix[[1303503,1298717],'loan_amnt'].sum()
除了增加行的查询条件以外,还可以增加列的查询条件,下面的代码中查询了一个特定用户的贷款金额和年收入情况,结果中分别显示了这两个字段的结果。
?
1
loandata.ix[1303503,['loan_amnt','annual_inc']]
多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的贷款金额和年收入两个字段求和,并显示出结果。
?
1
loandata.ix[1303503,['loan_amnt','annual_inc']].sum()