❶ 如何用pdb进行python调试
本文章讲述了如何用pdb进行python调试讲解.
当手边
没有IDE,面对着python调试犯愁时,你就可以参考下本文;(pdb 命令调试)
和 (pdb)help
用pdb进行python调试,用法顷袜基本和gdb差不多,
先看一个简单的例子:
epdb1.py .# epdb1.py -- experiment with the Python debugger, pdb
a = "aaa"
b = "bbb"
c = "ccc"
final = a + b + c
print final
比如要对这个程序进行调试:
1:在文件前面加上这一句,引入调试的模块。
import pdb
2:在要开始调试的一行加上pdb.set_trace()文件变成:
# epdb1.py -- experiment with the Python debugger, pdb
import pdb
a = "aaa"
逗乎伏pdb.set_trace()
b = "bbb"
c = "ccc"
final = a + b + c
print final 可以运行这个程序,到断点出会停下来,和gdb类似,
可以执行命令:
直接回车是重复前一条命令!
p(print) 查看一个变量值
n(next) 下一步
s(step) 单步,可进入函数
c(continue)继续前进
l(list)看源代码
用pdb调试有多种方式可选:
1.命令行启动目标程序,加上-m参数,这样调用myscript.py的话断点就是程序的执行第一行之前
python -m pdb myscript.py
2. 在Python交互环境中启用调试
>>> import pdb
>>> import mymole
>>> pdb.run('mymole.test()')
3.比较常用的,就是在程序中间插入一段程序,相对于在一般IDE里面打上断点然后启动debug,不过这种方式是hardcode的 if __name__ == "__main__" :
a = 1
importpdb
pdb .set_trace()
b = 2
c = a + b
print( c)
然后正常运行脚本,到了pdb.set_trace()那就会定下来,就可以看到调试的提示符(Pdb)了
常用的调试命令 h(elp),会打印当前版本Pdb可用的命令,如果要查询某个命令,可以输入 h [command],例如:"h l" - 查看list命令
l(ist),可以列出当前将要运行的代码块
(Pdb) l
497 pdb.set_trace()
498 base_data = {}
499 new_data = {}
500 try:
501 execfile(base_file_name,{},base_data)
502 -> execfile(new_file_name,{},new_data)
503 except:
504 logger.writeLog("error! load result log error!")
505 print "load cmp logs error!"
506 raise Exception, "load cmp logs error!"
507>断点设置
(Pdb)b10 #断点设置在本py的第10行
或(Pdb)bots.py:20 #断点设置到 ots.py第20行
删除断点(Pdb)b #查看断点编号
(Pdb)cl 2 #删除第2个断点
>运行
(Pdb)n #单步运行
(Pdb)s #细点运行 也就是会下到,方法
(Pdb)c #跳到下个断点
山携>查看
(Pdb)p param #查看当前 变量值
(Pdb)l #查看运行到某处代码
(Pdb)a #查看全部栈内变量 b(reak), 设置断点,例如 "b 77″,就是在当前脚本的77行打上断点,还能输入函数名作为参数,断点就打到具体的函数入口,如果只敲b,会显示现有的全部断点
(Pdb) b 504
Breakpoint 4 at /home/jchen/regression/regressionLogCMP.py:504 condition bpnumber [condition],设置条件断点,下面语句就是对第4个断点加上条件"a==3"
(Pdb) condition 4 a==3
(Pdb) b
Num Type Disp Enb Where
4 breakpoint keep yes at /home/jchen/regression/regressionLogCMP.py:504
stop only if a==3 cl(ear),如果后面带有参数,就是清除指定的断点(我在Python2.4上从来没成功过!!!);如果不带参数就是清除所有的断点
(Pdb) cl
Clear all breaks? y disable/enable,禁用/激活断点
(Pdb) disable 3
(Pdb) b
Num Type Disp Enb Where
3 breakpoint keep no at /home/jchen/regression/regressionLogCMP.py:505 n(ext),让程序运行下一行,如果当前语句有一个函数调用,用n是不会进入被调用的函数体中的
s(tep),跟n相似,但是如果当前有一个函数调用,那么s会进入被调用的函数体中
c(ont(inue)),让程序正常运行,直到遇到断点
j(ump),让程序跳转到指定的行数
(Pdb) j 497
> /home/jchen/regression/regressionLogCMP.py(497)com pareLog()
-> pdb.set_trace() a(rgs),打印当前函数的参数
(Pdb) a
_logger =
_base = ./base/MRM-8137.log
_new = ./new/MRM-8137.log
_caseid = 5550001
_toStepNum = 10
_cmpMap = {'_bcmpbinarylog': 'True', '_bcmpLog': 'True', '_bcmpresp': 'True'} p,最有用的命令之一,打印某个变量
(Pdb) p _new
u'./new/MRM-8137.log' !,感叹号后面跟着语句,可以直接改变某个变量
q(uit),退出调试
==============================================================================================
在python中使用pdb模块可以进行调试
import pdb
pdb.set_trace()
也可以使用python -m pdb mysqcript.py这样的方式
(Pdb) 会自动停在第一行,等待调试,这时你可以看看 帮助
(Pdb) h
说明下这几个关键 命令
>断点设置
(Pdb)b 10 #断点设置在本py的第10行
或(Pdb)b ots.py:20 #断点设置到 ots.py第20行
删除断点(Pdb)b #查看断点编号
(Pdb)cl 2 #删除第2个断点
>运行
(Pdb)n #单步运行
(Pdb)s #细点运行 也就是会下到,方法
(Pdb)c #跳到下个断点
>查看
(Pdb)p param #查看当前 变量值
(Pdb)l #查看运行到某处代码
(Pdb)a #查看全部栈内变量
(Pdb)w 列出目前call stack 中的所在层。
(Pdb)d 在call stack中往下移一层
(Pdb)u 在call stack中往上移一层。如果在上移一层之后按下 n ,则会在上移之后的一层执行下一个叙述,之前的 function call 就自动返回。
(Pdb)cl 清除指定的断点。如果没有带参数,则清除所有断点。
(Pdb)disable 取消所有断点的功能,但仍然保留这些断点。
(Pdb)enable 恢复断点的功能。
(Pdb)ignore 设定断点的忽略次数。如果没指定 count,其初始 为 0。当 count 为 0 时,断点会正常动作。若有指定 count,则每次执行到该中断, count 就少 1,直到 count 数为 0。
(Pdb)condition bpnumber [condition]
(Pdb)j(ump) lineNo. 跳到某行执行。只有在 call stack 的最底部才能作用。
(Pdb)l 列出目前所在档案中的位置。连续地 l 命令会一直列到档案结尾,可以使用指定行数或范围来打印。
(Pdb)pp 和 p 命令类似,但是使用 pprint mole(没用过 pprint,详情请参考 Python Library Reference)。
(Pdb)alias 以一个"别名"代替"一群除错命令",有点类似 c/c 的 macro(详情请参考 Python Library Reference)。
(Pdb)unalias 取消某个 alias。
(Pdb)[!]statement 在目前的环境(context)中执行叙述。
转载
❷ 如何用pdb进行python调试
Debug 对于是一项非常重要盯侍的功能,它能够帮助我们准确的定位错误,发现程序中的 bug。
python 提供了一系列 debug 的工具和包,可供滚历我们选择。
pdb 是 python 自带的一个包,为 python 程序提供了一种交互的源代码调试功能,主要特性包括
设置断点
单步调试
进入函数调试
查看当凯备吵前代码
查看栈片段
动态改变变量的值
启动方式:python -m pdb xxx.py
❸ python工具有哪些
第一款:最强终端 Upterm
它是一个全平台的终端,可以说是终端里的IDE,有着强大的自动补全功能,之前的名字叫作:BlackWindow。有人跟他说这个名字不利于社区推广,改名叫Upterm之后现在已经17000+Star了。
第二款:交互式解释器 PtPython
一个交互式的Python解释器,支持语法高亮、提示,甚至是VIM和emacs的键入模式。
第三款:包管理必备 Anaconda
强烈推荐:Anaconda。它能帮你安装许多麻烦的东西,包括:Python环境、pip包管理工具、常用的库、配置好环境路径等等。这些小事情小白自己一个个去做的话,容易遇到各种问题,也容易造成挫败感。如果你想用Python搞数据方面的事情,安装它就可以了,它甚至开发了一套JIT的解释器Numba。所以Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞定了。
第四款:编辑器 Sublime3
如果你是小白的话,推荐从PyCharm开始上手,但是有时候写一些轻量的小脚本,就会想到轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单,配合安装Anaconda或CodeIntel插件,可以让Sublime3拥有近乎IDE的体验。
第五款:前端在线编辑器 CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想要写前端的话,这个在线编辑器太方便了,节省了后端工程师的生命。不用安装npm的几千个包了,它已经在云端完成了,才让你直接就可以上手写代码、看效果。对于React、Vue这些主流前端框架都支持。
第六款:Python Tutor
Python
Tutor是一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在web浏览器中编写Python代码,并逐步可视化地运行程序。
第七款:IPython
如何进行交互式编程?没错,就是通过IPython。IPython相对于Python自带的shell要好用的多,并且能够支持代码缩进、TAB键补全代码等功能。如果进行交互式编程,这是不可缺少的工具。
第八款:Jupyter Notebook
Jupyter
Notebook就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以Web页面的方式展示,它是数据分析、机器学习的必备工具。
第九款:Pycharm
Pycharm是程序员常常使用的开发工具,简单、易用,并且能够设置不同的主题模式,根据自己的喜好来设置代码风格。
第十款:Python Tutor
这个工具可能对初学者比较有用,而对于中高级程序员则用处较少。这个工具的特色是能够清楚的理解每一行代码是如何在计算机中执行的,中高级程序员一般通过分步调试可以实现类似的功能。这个工具对于最初接触Python、最初来学习编程的同学还是非常有用的,初学者可以体验一下。
❹ python如何一步步调试
装个Pycharm
1 添加断点
2 Debug下运行代码:
3 F8:进行下一步操作
F7 :跳入下一个方法中
❺ python脚本可以单步调试吗
可以,选择带调试功能的编歼改历咐辑器就行了氏烂判,比如
PyCharm,
PyScripter
❻ 调试python代码的方法有哪些
本文讨论在没有方便的IDE工具可用的情况下,使用pdb调试python程序
源码例子
例如,有模拟税收计算的程序:
#!/usr/bin/python
def debug_demo(val):
if val <= 1600 :
print "level 1"
print 0
elif val <= 3500 :
print "level 2"
print (val - 1600) * 0.05
elif val <= 6500 :
print "level 3"
print (val - 3500) * 0.10 + (3500-1600) * 0.05
else:
print "level 4"
print (val - 6500) * 0.20 + (6500-3500) * 0.10 + (3500-1600) * 0.05
#~def debug_demo
if __name__ == "__main__":
debug_demo(4500)
debug_demo函数计算4500的入账所需的税收。
如何调试?
1.加入断点
在需要插入断点的地方,加入红色部分代码:如果_DEBUG值为True,则在该处开始调试(加入_DEBUG的原因是为了方便打开/关闭调试)。
#!/usr/bin/python
_DEBUG=True
def debug_demo(val):
if _DEBUG == True:
import pdb
pdb.set_trace()
if val <= 1600 :
print "level 1"
print 0
elif val <= 3500 :
print "level 2"
print (val - 1600) * 0.05
elif val <= 6500 :
print "level 3"
print (val - 3500) * 0.10 + (3500-1600) * 0.05
else:
print "level 4"
print (val - 6500) * 0.20 + (6500-3500) * 0.10 + (3500-1600) * 0.05
#~def debug_demo
if __name__ == "__main__":
debug_demo(4500)
2.开始运行调试
运行程序./debug_demo.py,得到
> /usr/local/qspace/user_network/debug_demo.py(7)debug_demo()
-> if val <= 1600 :
(Pdb)
-> val <= 1600 : 指示当前执行的语句,(Pdb)等待你的调试指令. pdb的指令很丰富,输入h指令可以查看指令的使用方法。下面简单介绍常用指令:
查看代码上下文,l(小写L)
(Pdb) l
2 _DEBUG=True
3 def debug_demo(val):
4 if _DEBUG == True:
5 import pdb
6 pdb.set_trace()
7 -> if val <= 1600 :
8 print "level 1"
9 print 0
10 elif val <= 3500 :
11 print "level 2"
12 print (val - 1600) * 0.05
(Pdb)
左边是行号,右边是代码正文。
监视变量:p 变量名
(Pdb) p val
4500
(Pdb)
单步执行: n
-> elif val <= 3500 :
(Pdb) l
5 import pdb
6 pdb.set_trace()
7 if val <= 1600 :
8 print "level 1"
9 print 0
10 -> elif val <= 3500 :
11 print "level 2"
12 print (val - 1600) * 0.05
13 elif val <= 6500 :
14 print "level 3"
15 print (val - 3500) * 0.10 + (3500-1600) * 0.05
加入断点:b 行号
(Pdb) b 14
运行到断点: c
(Pdb) c
> /*****
-> print "level 3"
(Pdb) l
9 print 0
10 elif val <= 3500 :
11 print "level 2"
12 print (val - 1600) * 0.05
13 elif val <= 6500 :
14 B-> print "level 3"
15 print (val - 3500) * 0.10 + (3500-1600) * 0.05
16 else:
17 print "level 4"
18 print (val - 6500) * 0.20 + (6500-3500) * 0.10 + (3500-1600) * 0.05
19
执行到函数返回前: r
(Pdb) r
level 3
195.0
--Return--
> /****()
->None
-> print (val - 3500) * 0.10 + (3500-1600) * 0.05
(Pdb)
说明:
pdb还有很多其他很多有用的指令,读者可以自行探索。输入h,h 命令。就可以得到命令的详细帮助。
不过,我个人认为一般无需启动这种调试方法,一般使用日志输出进行调试即可,除非遇到了非常微妙的错误。这时,单步调试的威力便显示出来了
❼ 分享!5个好用的Python工具
1、 IDLE
IDLE直译过来就是集成开发与学习环境的意思,一般安装 Python 时也会默认安装 IDLE。每个语言都可以有自己的IDLE。它让Python的入门变得简单,对于没什么基础的人写就对了。它的主要功能包括Python shell 窗口(交互式解释器)、跨平台(Windows、Linux、UNIX、Mac OS X)、智能缩进、代码着色、自动提示、可以实现断点提示、单步执行等调试功能的基本集成调试器。
2、 Scikit-learn
scikit-learn是一个建立在Scipy基础上的用于机器学习的Python模块。其中scikit-learn是最有名的,是开源的,任何人都可以免费地使用这个库或者进行二次开发。它是一个非常强大的工具,能为库的开发提供高水平的支持和严格的管理。它也得到了很多第三方工具的支持,有丰富的功能适用于各种用例。
3、Theano
Theano是一个较老牌和稳定的机器学习python库之一,虽然目前使用的人数有所下降。但它毕竟是一个祖师级的存在,一定有它的优点所在。Theano基于Python擅长处理多维数组,属于比较底层的框架,theano起初也是为了深度学习中大规模人工神经网络算法的运算所设计,我们可利用符号化式语言定义想要的结果,支持GPU加速,非常适合深度学习Python。
4、Selenium
Selenium 是自动化的最佳工具之一。它属于 Python 测试的自动化。它在 Web 应用程序中用于自动化框架。支持多款主流浏览器,提供了功能丰富的API接口,常被用作爬虫工具。使用它可以用许多编程语言编写测试脚本,包括Java、C#、python、ruby等。还可以集成 Junit 和 TestNG 等铀工具来管理测试用例并生成报告。
5、Skulpt
Skulpt 是一个用 Javascript 实现的在线 Python 执行环境,完全依靠浏览器端模拟实现Python运行的工具。不需要任何预处理、插件或服务器端支持,只需编写python并重新载入即可。因为代码完全是在浏览器中运行的,所以不用担心服务器崩溃的问题。
关于分享!5个好用的Python工具,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。
❽ python eirc怎么单步调试
工作文件敬雀樱夹-选择你岁磨的py保存目录。
命令行不亮丛用选择,直接点击ok就可以运行选择目录下的py了!
❾ python 为什么不能一步步手动调试
python的IDLE有调试功能
IDLE的调试功能比较初级,可以用下其它IDE的调试功能如pycharm
IDLE的调试模式:
图一是打开调试模式的按钮
图二是打开的调试界面
图三是当你运行任何一个运行脚本时,就会进行调试
单步调试什么的都在那个面板上,断点要在脚本文件里右键打
❿ 大神可以给我介绍一下Python IDLE怎么用吗
先简单介绍一下:
Python IDLE是 python自带的一款简洁的集成开发环境,当安装好python之后,python 菜单组就有一项,可以用来启动 IDLE: