//加密
$hash_password = hash_password($password, PASSWORD_DEFAULT);
//验证
if (password_verify($password, $hash_password)) {
//密码正确
} else {
//密码错误
}
㈡ 求教PHP和java大神 base64_encode(hash_hmac('sha1',$public_key,$private_key,TRUE)); 转 java
如果你的API服务安全认证协议中要求使用hmac_sha1方法对信息进行编码,
而你的服务是由PHP实现的,客户端是由JAVA实现的,那么为了对签名正确比对,就需要在两者之间建立能匹配的编码方式.
efine('ID','123456');
define('KEY','k123456');
$strToSign = "test_string";
$utf8Str = mb_convert_encoding($strToSign, "UTF-8");
$hmac_sha1_str = base64_encode(hash_hmac("sha1", $utf8Str, KEY));
$signature = urlencode($hmac_sha1_str);
print_r($signature);
JAVA侧需要注意如下几点:
1. hmac_sha1编码结果需要转换成hex格式
2. java中base64的实现和php不一致,其中java并不会在字符串末尾填补=号以把字节数补充为8的整数
3. hmac_sha1并非sha1, hmac_sha1是需要共享密钥的
参考实现如下:
[java] view plain
import java.io.UnsupportedEncodingException;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import org.apache.wicket.util.crypt.Base64UrlSafe;
public class test {
public static void main(String[] args) {
String key = "";
String toHash = "GET"+"\n"+"Thu, 09 Aug 2012 13:33:46 +0000"+"\n"+"/ApiChannel/Report.m";
//String toHashUtf8 = URLEncoder.encode(toHash, "UTF-8");
String res = hmac_sha1(toHash, key);
//System.out.print(res+"\n");
String signature;
try {
signature = new String(Base64UrlSafe.encodeBase64(res.getBytes()),"UTF-8");
signature = appendEqualSign(signature);
System.out.print(signature);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
}
public static String hmac_sha1(String value, String key) {
try {
// Get an hmac_sha1 key from the raw key bytes
byte[] keyBytes = key.getBytes();
SecretKeySpec signingKey = new SecretKeySpec(keyBytes, "HmacSHA1");
// Get an hmac_sha1 Mac instance and initialize with the signing key
Mac mac = Mac.getInstance("HmacSHA1");
mac.init(signingKey);
// Compute the hmac on input data bytes
byte[] rawHmac = mac.doFinal(value.getBytes());
// Convert raw bytes to Hex
String hexBytes = byte2hex(rawHmac);
return hexBytes;
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static String byte2hex(final byte[] b){
String hs="";
String stmp="";
for (int n=0; n<b.length; n++){
stmp=(java.lang.Integer.toHexString(b[n] & 0xFF));
if (stmp.length()==1) hs=hs+"0"+stmp;
else hs=hs+stmp;
}
return hs;
}
private static String appendEqualSign(String s){
int len = s.length();
int appendNum = 8 - (int)(len/8);
for (int n=0; n<appendNum; n++){
s += "%3D";
}
return s;
}
}
参考:http://www.iteye.com/topic/1002652
㈢ php excel加密的实现方法有什么
PHP中的加密方式有如下几种
1. MD5加密
string md5 ( string $str [, bool $raw_output = false ] )
参数
str -- 原始字符串。
raw_output -- 如果可选的 raw_output 被设置为 TRUE,那么 MD5 报文摘要将以16字节长度的原始二进制格式返回。
这是一种不可逆加密,执行如下的代码
$password = ‘123456‘;
echo md5($password);
得到结果是
2. Crype加密
string crypt ( string $str [, string $salt ] )
crypt() 返回一个基于标准 UNIX DES 算法或系统上其他可用的替代算法的散列字符串。
参数
str -- 待散列的字符串。
salt -- 可选的盐值字符串。如果没有提供,算法行为将由不同的算法实现决定,并可能导致不可预料的结束。
这是也一种不可逆加密,执行如下的代码
代码如下:
$password = ‘123456‘;
$salt = "test";// 只取前两个
echo crypt($password, $salt);
得到的结果是teMGKvBPcptKo
使用自动盐值的例子如下:
代码如下:
$password = crypt(‘mypassword‘); // 自动生成盐值
/* 你应当使用 crypt() 得到的完整结果作为盐值进行密码校验,以此来避免使用不同散列算法导致的问题。(如上所述,基于标准 DES 算法的密码散列使用 2 字符盐值,但是基于 MD5 算法的散列使用 12 个字符盐值。)*/
if (crypt(‘mypassword‘, $password) == $password) {
echo "Password verified!";
}
执行结果是输出 Password verified!
以不同散列类型使用 crypt()的例子如下:
代码如下:
if (CRYPT_STD_DES == 1) {
echo ‘Standard DES: ‘ . crypt(‘rasmuslerdorf‘, ‘rl‘) . "\n";
}
if (CRYPT_EXT_DES == 1) {
echo ‘Extended DES: ‘ . crypt(‘rasmuslerdorf‘, ‘_J9..rasm‘) . "\n";
}
if (CRYPT_MD5 == 1) {
echo ‘MD5: ‘ . crypt(‘rasmuslerdorf‘, ‘$1$rasmusle$‘) . "\n";
}
if (CRYPT_BLOWFISH == 1) {
echo ‘Blowfish: ‘ . crypt(‘rasmuslerdorf‘, ‘$2a$07$usesomesillystringforsalt$‘) . "\n";
}
if (CRYPT_SHA256 == 1) {
echo ‘SHA-256: ‘ . crypt(‘rasmuslerdorf‘, ‘$5$rounds=5000$usesomesillystringforsalt$‘) . "\n";
}
if (CRYPT_SHA512 == 1) {
echo ‘SHA-512: ‘ . crypt(‘rasmuslerdorf‘, ‘$6$rounds=5000$usesomesillystringforsalt$‘) . "\n";
}
其结果如下
Standard DES: rl.3StKT.4T8M
Extended DES: _J9..rasmBYk8r9AiWNc
MD5: $1$rasmusle$rISCgZzpwk3UhDidwXvin0
Blowfish: $2a$07$./U9C8sBjqp8I90dH6hi
SHA-256: $5$rounds=5000$usesomesillystri$/Tp.6
SHA-512: $6$rounds=5000$usesomesillystri$.S5KPgErtP/EN5mcO.ChWQW21
在 crypt() 函数支持多重散列的系统上,下面的常量根据相应的类型是否可用被设置为 0 或 1:
CRYPT_STD_DES - 基于标准 DES 算法的散列使用 "./0-9A-Za-z" 字符中的两个字符作为盐值。在盐值中使用非法的字符将导致 crypt() 失败。
CRYPT_EXT_DES - 扩展的基于 DES 算法的散列。其盐值为 9 个字符的字符串,由 1 个下划线后面跟着 4 字节循环次数和 4 字节盐值组成。它们被编码成可打印字符,每个字符 6 位,有效位最少的优先。0 到 63 被编码为 "./0-9A-Za-z"。在盐值中使用非法的字符将导致 crypt() 失败。
CRYPT_MD5 - MD5 散列使用一个以 $1$ 开始的 12 字符的字符串盐值。
CRYPT_BLOWFISH - Blowfish 算法使用如下盐值:“$2a$”,一个两位 cost 参数,“$” 以及 64 位由 “./0-9A-Za-z” 中的字符组合而成的字符串。在盐值中使用此范围之外的字符将导致 crypt() 返回一个空字符串。两位 cost 参数是循环次数以 2 为底的对数,它的范围是 04-31,超出这个范围将导致 crypt() 失败。
CRYPT_SHA256 - SHA-256 算法使用一个以 $5$ 开头的 16 字符字符串盐值进行散列。如果盐值字符串以 “rounds=$” 开头,N 的数字值将被用来指定散列循环的执行次数,这点很像 Blowfish 算法的 cost 参数。默认的循环次数是 5000,最小是 1000,最大是 999,999,999。超出这个范围的 N 将会被转换为最接近的值。
CRYPT_SHA512 - SHA-512 算法使用一个以 $6$ 开头的 16 字符字符串盐值进行散列。如果盐值字符串以 “rounds=$” 开头,N 的数字值将被用来指定散列循环的执行次数,这点很像 Blowfish 算法的 cost 参数。默认的循环次数是 5000,最小是 1000,最大是 999,999,999。超出这个范围的 N 将会被转换为最接近的值。
3. Sha1加密
string sha1 ( string $str [, bool $raw_output = false ] )
参数
str -- 输入字符串。
raw_output -- 如果可选的 raw_output 参数被设置为 TRUE,那么 sha1 摘要将以 20 字符长度的原始格式返回,否则返回值是一个 40 字符长度的十六进制数字。
这是也一种不可逆加密,执行如下代码:
$password = ‘123456‘;
echo sha1($password);
得到的结果是
以上几种虽然是不可逆加密,但是也可以根据查字典的方式去解密。如下的地址中就提供了可以将上面的加密结果解密出来的功能。
http://www.cmd5.com/
那大家是不是加了就算加了密,也没用啊,其实不然,只要你的加密足够复杂,被破解出的可能性就越小,比如用以上三种加密方式混合加密,之后我会推荐给大家一个php的加密库。
4. URL加密
string urlencode ( string $str )
此函数便于将字符串编码并将其用于 URL 的请求部分,同时它还便于将变量传递给下一页。
返回字符串,此字符串中除了 -_. 之外的所有非字母数字字符都将被替换成百分号(%)后跟两位十六进制数,空格则编码为加号(+)。此编码与 WWW 表单 POST 数据的编码方式是一样的,同时与 application/x-www-form-urlencoded 的媒体类型编码方式一样。由于历史原因,此编码在将空格编码为加号(+)方面与 RFC1738 编码不同。
string urldecode ( string $str )
解码给出的已编码字符串中的任何 %##。 加号(‘+‘)被解码成一个空格字符。
这是一种可逆加密,urlencode方法用于加密,urldecode方法用于解密,执行如下代码:
$url = ‘http://www.xxx.com/CraryPrimitiveMan/‘;
$encodeUrl = urlencode($url);
echo $encodeUrl . "\n";// 如果是在网页上展示的,就将\n修改为
echo urldecode($encodeUrl);
得到的结果如下
http%3A%2F%2Fwww.xxx.com%2FCraryPrimitiveMan%2F
http://www.xxx.com/CraryPrimitiveMan/
基于RFC 3986的加密URL的方法如下:
代码如下:
function myUrlEncode($string) {
$entities = array(‘%21‘, ‘%2A‘, ‘%27‘, ‘%28‘, ‘%29‘, ‘%3B‘, ‘%3A‘, ‘%40‘, ‘%26‘, ‘%3D‘, ‘%2B‘, ‘%24‘, ‘%2C‘, ‘%2F‘, ‘%3F‘, ‘%25‘, ‘%23‘, ‘%5B‘, ‘%5D‘);
$replacements = array(‘!‘, ‘*‘, "‘", "(", ")", ";", ":", "@", "&", "=", "+", "$", ",", "/", "?", "%", "#", "[", "]");
return str_replace($entities, $replacements, urlencode($string));
}
5. Base64信息编码加密
string base64_encode ( string $data )
使用 base64 对 data 进行编码。
设计此种编码是为了使二进制数据可以通过非纯 8-bit 的传输层传输,例如电子邮件的主体。
Base64-encoded 数据要比原始数据多占用 33% 左右的空间。
string base64_decode ( string $data [, bool $strict = false ] )
对 base64 编码的 data 进行解码。
参数
data -- 编码过的数据。
strict -- 如果输入的数据超出了 base64 字母表,则返回 FALSE。
执行如下代码:
代码如下:
$name = ‘CraryPrimitiveMan‘;
$encodeName = base64_encode($name);
echo $encodeName . "\n";
echo base64_decode($encodeName);
其结果如下
代码如下:
Q3JhcnlQcmltaXRpdmVNYW4=
CraryPrimitiveMan
推荐phpass
经 phpass 0.3 测试,在存入数据库之前进行哈希保护用户密码的标准方式。 许多常用的哈希算法如 md5,甚至是 sha1 对于密码存储都是不安全的, 因为骇客能够使用那些算法轻而易举地破解密码。
对密码进行哈希最安全的方法是使用 bcrypt 算法。开源的 phpass 库以一个易于使用的类来提供该功能。
代码如下:
<?php
// Include phpass 库
require_once(‘phpass-03/PasswordHash.php‘)
// 初始化散列器为不可移植(这样更安全)
$hasher = new PasswordHash(8, false);
// 计算密码的哈希值。$hashedPassword 是一个长度为 60 个字符的字符串.
$hashedPassword = $hasher->HashPassword(‘my super cool password‘);
// 你现在可以安全地将 $hashedPassword 保存到数据库中!
// 通过比较用户输入内容(产生的哈希值)和我们之前计算出的哈希值,来判断用户是否输入了正确的密码
$hasher->CheckPassword(‘the wrong password‘, $hashedPassword); // false
$hasher->CheckPassword(‘my super cool password‘, $hashedPassword); // true
?>
㈣ PHP mysql 实现hash分区的问题
当分片索引不是纯整型的字符串时,只接受整型的内置 hash 算法是无法使用的。为此,stringhash 按照用户定义的起点和终点去截取分片索引字段中的部分字符,根据当中每个字符的二进制 unicode 值换算出一个长整型数值,然后就直接调用内置 hash 算法求解分片路由:先求模得到逻辑分片号,再根据逻辑分片号直接映射到物理分片。
用户需要在 rule.xml 中定义 partitionLength[] 和 partitionCount[] 两个数组和 hashSlice 二元组。
在 DBLE 的启动阶段,点乘两个数组得到模数,也是逻辑分片的数量
并且根据两个数组的叉乘,得到各个逻辑分片到物理分片的映射表(物理分片数量由 partitionCount[] 数组的元素值之和)
此外根据 hashSlice 二元组,约定把分片索引值中的第 4 字符到第 5 字符(字符串以 0 开始编号,编号 3 到编号 4 等于第 4 字符到第 5 字符)字符串用于 “字符串->整型”的转换
在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值会被提取出来,取当中的第 4 个字符到第 5 字符,送入下一步
设置一个初始值为 0 的累计值,逐个取字符,把累计值乘以 31,再把这个字符的 unicode 值当成长整型加入到累计值中,如此类推直至处理完截取出来的所有字符,此时的累计值就能够代表用户的分片索引值,完成了 “字符串->整型” 的转换
对上一步的累计值进行求模,得到逻辑分片号
再根据逻辑分片号,查映射表,直接得到物理分片号
与MyCat的类似分片算法对比
两种算法在string转化为int之后,和 hash 分区算法相同,区别也继承了 hash 算法的区别。
开发注意点
【分片索引】1. 必须是字符串
【分片索引】2. 最大物理分片配置方法是,让 partitionCount[] 数组和等于 2880
例如:
或
【分片索引】3. 最小物理分片配置方法是,让 partitionCount[] 数组和等于 1
例如
【分片索引】4. partitionLength 和 partitionCount 被当做两个逗号分隔的一维数组,它们之间的点乘必须在 [1, 2880] 范围内
【分片索引】5. partitionLength 和 partitionCount 的配置对顺序敏感
和
是不同的分片结果
【分片索引】6. 分片索引字段长度小于用户指定的截取长度时,截取长度会安全减少到符合分片索引字段长度
【数据分布】1. 分片索引字段截取越长则越有利于数据均匀分布
【数据分布】2. 分片索引字段的内容重复率越低则越有利于数据均匀分布
运维注意点
【扩容】1. 预先过量分片,并且不改变 partitionCount 和 partitionLength 点乘结果,也不改变截取设置 hashSlice 时,可以避免数据再平衡,只需进行涉及数据的迁移
【扩容】2. 若需要改变 partitionCount 和 partitionLength 点乘结果或改变截取设置 hashSlice 时,需要数据再平衡
【缩容】1. 预先过量分片,并且不改变 partitionCount 和 partitionLength 点乘结果,也不改变截取设置 hashSlice 时,可以避免数据再平衡,只需进行涉及数据的迁移
【缩容】2. 若需要改变 partitionCount 和 partitionLength 点乘结果或改变截取设置 hashSlice 时,需要数据再平衡
配置注意点
【配置项】1. 在 rule.xml 中,可配置项为<property name="partitionLength"> 、<property name="partitionCount"> 和 <property name="hashSlice">
【配置项】2.在 rule.xml 中配置 <property name="partitionLength">标签
内容形式为:<物理分片持有的虚拟分片数>[,<物理分片持有的虚拟分片数>,...<物理分片持有的虚拟分片数>]
物理分片持有的虚拟分片数必须是整型,物理分片持有的虚拟分片数从左到右与同顺序的物理分片数对应,partitionLength 和partitionCount 的点乘结果必须在 [1, 2880] 范围内
【配置项】3. 在 rule.xml 中配置 <property name="partitionCount">标签
内容形式为:<物理分片数>[,<物理分片数>,...<物理分片数>]
其中物理分片数必须是整型,物理分片数按从左到右的顺序与同顺序的物理分片持有的虚拟分片数对应,物理分片的编号从左到右连续递进,partitionLength 和 partitionCount 的点乘结果必须在 [1, 2880] 范围内
【配置项】4. partitionLength 和 partitionCount 的语义是:持有partitionLength[i] 个虚拟分片的物理分片有 partitionCount[i] 个
例如
语义是持有 512 个逻辑分片的物理分片有 1 个,紧随其后,持有 256 个逻辑分片的物理分片有 2 个
【配置项】5.partitionLength 和 partitionCount 都对书写顺序敏感,
例如
分片结果是第一个物理分片持有头512个逻辑分片,第二个物理分片持有紧接着的256个逻辑分片,第三个物理分片持有最后256个逻辑分片,相对的
分片结果则是第一个物理分片持有头 256 个逻辑分片,第二个物理分片持有紧接着的 256 个逻辑分片,第三个物理分片持有最后 512 个逻辑分片
【配置项】6.partitionLength[] 的元素全部为 1 时,这时候partitionCount 数组和等于 partitionLength 和 partitionCount 的点乘,物理分片和逻辑分片就会一一对应,该分片算法等效于直接取余
【配置项】7.在 rule.xml 中配置标签,从分片索引字段的第几个字符开始截取到第几个字符:
若希望从首字符开始截取 k 个字符( k 为正整数),配置的内容形式可以为“ 0 : k ”、“ k ”或“ : k ”;
若希望从末字符开始截取 k 个字符( k 为正整数),则配置的内容形式可以为“ -k : 0 ”、“ -k ”或“ -k : ”;
若希望从头第 m 个字符起算截取 n 个字符( m 和 n 都是正整数),则先计算出 i = m - 1 和 j = i + n - 1,配置的内容形式为“ i : j ”;
若希望从尾第 m 个字符起算截取从尾算起的 n 个字符( m 和 n 都是正整数),则先计算出 i = -m + n - 1,配置的内容形式可以为“ -m : i ”;
若希望不截取,则配置的内容形式可以为“ 0 : 0 ”、“ 0 : ”、“ : 0 ”或 “ : ”
㈤ 深入PHP中的HashTable结构详解
深入PHP中的HashTable结构详解
对php内核有一定了解的人应该都知道php的精髓就是HashTable,HashTable在php的实现中无处不在。包括php的数组、什么全局变量、局部变量的作用域等等,php的hashtable拆开来说就是四部分:
hash函数:用的是time33的散列函数,将一个字符串的key转换成一个数字
一个C数组:用来储存桶(buckets)的
两个双向的链表:第一个双向链表是数组的每个元素(桶bucket)是一个双向链表,这样做是为了解决hash冲突;第二个双向链表是数组将每一个桶(bucket)连接起来,这里要连接的也就是第一个双向链表的链表头,这样做是为了遍历整个hash表用的,鸟哥有篇blog是讲php的foreach的,这里这样设计就是给foreach用的==>《深入理解PHP之数组(遍历顺序)》
我这里不再说hashtable的struct和bucket的`struct了,因为下面的推荐链接几乎都讲了,我不觉得我能描述和说的比他们好,每个人的水平不一样,我就以我现在的技术水平来描述,所以我就只把我整理的一些东西记录一下
下面是php中hash实现的两个文件:zend_hash.c zend_hash.h。这两个文件里面实现了一堆的api,也引申出了一堆的api,下面是实现出来的api的原型
复制代码 代码如下:
ZEND_API ulong zend_hash_func(const char *arKey, uint nKeyLength)
ZEND_API ulong zend_get_hash_value(const char *arKey, uint nKeyLength)
ZEND_API int _zend_hash_init(HashTable *ht, uint nSize, hash_func_t pHashFunction, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC)
ZEND_API void zend_hash_set_apply_protection(HashTable *ht, zend_bool bApplyProtection)
ZEND_API int _zend_hash_add_or_update(HashTable *ht, const char *arKey, uint nKeyLength, void *pData, uint nDataSize, void **pDest, int flag ZEND_FILE_LINE_DC)
ZEND_API int _zend_hash_quick_add_or_update(HashTable *ht, const char *arKey, uint nKeyLength, ulong h, void *pData, uint nDataSize, void **pDest, int flag ZEND_FILE_LINE_DC)
ZEND_API int _zend_hash_index_update_or_next_(HashTable *ht, ulong h, void *pData, uint nDataSize, void **pDest, int flag ZEND_FILE_LINE_DC)
ZEND_API int zend_hash_rehash(HashTable *ht)
static int zend_hash_do_resize(HashTable *ht)
ZEND_API int zend_hash_del_key_or_index(HashTable *ht, const char *arKey, uint nKeyLength, ulong h, int flag)
ZEND_API void zend_hash_destroy(HashTable *ht)
ZEND_API void zend_hash_clean(HashTable *ht)
static Bucket *zend_hash_apply_r(HashTable *ht, Bucket *p)
ZEND_API void zend_hash_graceful_destroy(HashTable *ht)
ZEND_API void zend_hash_graceful_reverse_destroy(HashTable *ht)
ZEND_API void zend_hash_apply(HashTable *ht, apply_func_t apply_func TSRMLS_DC)
ZEND_API void zend_hash_apply_with_argument(HashTable *ht, apply_func_arg_t apply_func, void *argument TSRMLS_DC)
ZEND_API void zend_hash_apply_with_arguments(HashTable *ht TSRMLS_DC, apply_func_args_t apply_func, int num_args, …)
ZEND_API void zend_hash_reverse_apply(HashTable *ht, apply_func_t apply_func TSRMLS_DC)
ZEND_API void zend_hash_(HashTable *target, HashTable *source, _ctor_func_t pCopyConstructor, void *tmp, uint size)
ZEND_API void _zend_hash_merge(HashTable *target, HashTable *source, _ctor_func_t pCopyConstructor, void *tmp, uint size, int overwrite ZEND_FILE_LINE_DC)
static zend_bool zend_hash_replace_checker_wrapper(HashTable *target, void *source_data, Bucket *p, void *pParam, merge_checker_func_t merge_checker_func)
ZEND_API void zend_hash_merge_ex(HashTable *target, HashTable *source, _ctor_func_t pCopyConstructor, uint size, merge_checker_func_t pMergeSource, void *pParam)
ZEND_API int zend_hash_find(const HashTable *ht, const char *arKey, uint nKeyLength, void **pData)
ZEND_API int zend_hash_quick_find(const HashTable *ht, const char *arKey, uint nKeyLength, ulong h, void **pData)
ZEND_API int zend_hash_exists(const HashTable *ht, const char *arKey, uint nKeyLength)
ZEND_API int zend_hash_quick_exists(const HashTable *ht, const char *arKey, uint nKeyLength, ulong h)
ZEND_API int zend_hash_index_find(const HashTable *ht, ulong h, void **pData)
ZEND_API int zend_hash_index_exists(const HashTable *ht, ulong h)
ZEND_API int zend_hash_num_elements(const HashTable *ht)
ZEND_API int zend_hash_get_pointer(const HashTable *ht, HashPointer *ptr)
ZEND_API int zend_hash_set_pointer(HashTable *ht, const HashPointer *ptr)
ZEND_API void zend_hash_internal_pointer_reset_ex(HashTable *ht, HashPosition *pos)
ZEND_API void zend_hash_internal_pointer_end_ex(HashTable *ht, HashPosition *pos)
ZEND_API int zend_hash_move_forward_ex(HashTable *ht, HashPosition *pos)
ZEND_API int zend_hash_move_backwards_ex(HashTable *ht, HashPosition *pos)
ZEND_API int zend_hash_get_current_key_ex(const HashTable *ht, char **str_index, uint *str_length, ulong *num_index, zend_bool plicate, HashPosition *pos)
ZEND_API int zend_hash_get_current_key_type_ex(HashTable *ht, HashPosition *pos)
ZEND_API int zend_hash_get_current_data_ex(HashTable *ht, void **pData, HashPosition *pos)
ZEND_API int zend_hash_update_current_key_ex(HashTable *ht, int key_type, const char *str_index, uint str_length, ulong num_index, int mode, HashPosition *pos)
ZEND_API int zend_hash_sort(HashTable *ht, sort_func_t sort_func, compare_func_t compar, int renumber TSRMLS_DC)
ZEND_API int zend_hash_compare(HashTable *ht1, HashTable *ht2, compare_func_t compar, zend_bool ordered TSRMLS_DC)
ZEND_API int zend_hash_minmax(const HashTable *ht, compare_func_t compar, int flag, void **pData TSRMLS_DC)
ZEND_API ulong zend_hash_next_free_element(const HashTable *ht)
void zend_hash_display_pListTail(const HashTable *ht)
void zend_hash_display(const HashTable *ht)
;㈥ php hash_hmac跟java算出来的结果不一样
问题解决代码如下:
public String md5(String txt) {
try{
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(txt.getBytes("GBK")); //问题主要出在这里,Java的字符串是unicode编码,不受源码文件的编码影响;而PHP的编码是和源码文件的编码一致,受源码编码影响。
StringBuffer buf=new StringBuffer();
for(byte b:md.digest()){
buf.append(String.format("%02x", b&0xff));
}
return buf.toString();
}catch( Exception e ){
e.printStackTrace();
return null;
}
}
㈦ PHP 函数hash_hmac()怎么用
hash_hmac — 使用 HMAC 方法生成带有密钥的哈希值
stringhash_hmac(string$algo,string$data,string$key[,bool$raw_output=false])
参数:
algo:要使用的哈希算法名称,例如:"md5","sha256","haval160,4" 等。
data:要进行哈希运算的消息。
key:使用 HMAC 生成信息摘要时所使用的密钥。
raw_output:设置为 TRUE 输出原始二进制数据, 设置为 FALSE 输出小写 16 进制字符串。
返回值:
如果 raw_output 设置为 TRUE, 则返回原始二进制数据表示的信息摘要,否则返回 16 进制小写字符串格式表示的信息摘要。
如果 algo 参数指定的不是受支持的算法,返回 FALSE。
㈧ 关于PHP5与PHP7的若干问题
一、
1、在Zend引擎和扩展中,经常要创建一个PHP的变量,底层就是一个zval指针。之前的版本都是通过MAKE_STD_ZVAL动态的从堆上分配一个zval内存。而PHP7可以直接使用栈内存。PHP代码中创建的变量也进行了优化,PHP7直接在栈内存上预分配zval。这样节约了大量内存分配和内存管理的操作。
2、zend_string存储hash值,array查询不再需要重复计算hash
3、PHP5的hashtable每个元素都是一个
Bucket
*,而PHP7直接存Bucket,减少了内存申请次数,提升了Cache命中率和内存访问速度。
4、PHP的C扩展函数与PHP中的变量进行参数输入时,要使用zend_parse_parameters()函数,这个函数根据一个字符串参数找到对应PHP的zval指针,然后进行赋值。
这个函数实际上有一定的性能消耗。PHP7直接使用宏替换了zend_parse_parameters函数,C扩展中不再需要使用zend_parse_parameters进行逐个参数的查找,宏展开后自动会实现参数赋值。仅此一项就提升了5%的性能。
5、很多PHP程序中会大量使用call_user_function,
is_int/string/array,
strlen
,
defined
函数。PHP5
都是以扩展函数的方式提供,PHP7中这4类函数改成ZendVM的OPCODE指令,执行更快。
除了上面5个主要优化点之外,PHP7还有其他更多的细节性能优化。如基础类型int、float、bool等改为直接进行值拷贝,排序算法改进,PCRE
with
JIT,execute_data和opline使用全局寄存器等等。PHP7对性能的优化会继续进行下去。
二、有一群人,
创建了一个PHP6的项目,
主要的目的是为PHP引擎增加Unicode支持.
当时开发者们同时维护5和6的开发,
慢慢的大家发现新功能都等着提交给6,
而6因为开发速度慢,
导致很多新特性没法提交,
状态很不理想.
再后来6就没人开发了
三、不太了解、我只用git下的php7主干代码
㈨ PHP如何计算图片哈希值
把图形文件(其实任何文件都这样)读入,然后将文件内容字符串做哈希就行了。和md5('abc')没区别,自己看一下手册怎么将文件内容读入变量就好了。
㈩ 用java,怎么把php数组转换成HashMap或者集合
public class Test
{
public static void main(String[] args)
{
List<HashMap<String, Object>> list = new ArrayList<HashMap<String,Object>>();
HashMap<String, Object> map = new HashMap<String, Object>();
map.put("url", "abc");
map.put("alt","123");
list.add(map);
HashMap<String, Object> map1 = new HashMap<String, Object>();
map1.put("url", "bcd");
map1.put("alt", "234");
list.add(map1);
HashMap<String, Object> map2 = new HashMap<String, Object>();
map2.put("url", "cde");
map2.put("alt", "345");
list.add(map2);
for(HashMap<String, Object> lists : list)
{
System.out.println(lists);
}
}
}
结果:
{alt=123, url=abc}
{alt=234, url=bcd}
{alt=345, url=cde}