‘壹’ python中的数据结构分析
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**
‘贰’ python的性能
PPT的性能,这个你也找找这方面的消息吧,关于这个性能的一些介绍上多了解一下这个情况。
‘叁’ 【Python 】性能优化系列:随机数
最近在做的项目重点部分与大量生成随机数有关,维度高达[1700000,10000],需要生成 10 x 30 次左右,这里遇到内存和速度的双重瓶颈,特地研究了一下如何优化随机数。
优化时间测试所需的分析工具在另一篇博客《性能优化系列一:分析工具》中提到。
原生的python中也有随机模块生成 random.randint 和 random.random 等,但是速度非常慢,numpy 速度可以大幅提升。一般都采用numpy生成随机数。
比较常用的就是以上几种。在需要生成大量随机数的情况下,或生成伪随机数的情况下,python 3.7 常用 RandomState 。
直接生成大规模非稀疏矩阵如下,经常遇到 MemoryError 的错误,大概是同时生成多个float64精度的大规模随机矩阵服务器内存不够,而random state 似乎也没提供调整类型的attr,
这时最好使用即使生成即使销毁,仅保留种子作为索引,同样,多个CPU之间共享大规模矩阵涉及到共享内存或数据传输同步较慢的问题,最好也共享seed而不是直接共享矩阵。
ps. 这里注意一般我们设置time.time()为种子时,对于并发性程序是无效的,不要在并发程序中同时定义,建议生成一个seed list 列表再从中取。
这里可以对大规模矩阵进行分片以进行后续的np 乘法,再切片赋值,以时间换内存。这种情况的麻烦在于如果设定随机数种子会导致每个分片的随机数相同。可以利用一个最初seed(爷爷种子)randint生成 一组切片组数的seed(父亲种子),再每次从中取不同的随机数。
在上述切片方法尝试之后,可以解决内存问题。但是时间非常慢,特别是采取s = 1时在standard normal 上调用170万次的时间长达3000s,line search一下搜索了大约100000为切片值仍然太慢。在文档中发现了 BitGenerator 和 Generator ,大约可以提速到原来的 1/3。
除了Numpy和基本模块之外,AES CTR 加密算法生成随机数也很快,但是并不能有比较方便的方式控制每次生成的一样。参见以下reference。
tensorflow 和 pytorch 也都有大规模生成随机tensor的方式。性能待考。
1. 超快生成随机数的方式CSDN博客
2. tensorflow 生成随机tensor
‘肆’ 有哪些 Python 经典书籍
《Python编程入门:从入门到实践》
【同时使用Python 2.X和3.X讲解】
Amazon编程入门类榜首图书,最值得关注的Python入门书
从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程,开发实际项目
这本书分两部分:
第一部分介绍用Python编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。
《Python基础教程(第2版·修订版)》
【Python 2.5讲解,Python 3上也能运行】
各大网店最畅销的Python入门书
全书分为三部分。
第一部分讲述Python语法,没有废话,还掺入了一些Python 3.0要注意的细节。
第二部分介绍了常用的GUI、框架等应用,点到即止,算是为第三部分做铺垫了,从数目众多的应用中可以了解到Python的强大。
第三部分是Project,全书最大的亮点,大家肯定喜欢。
作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发。
《Python语言及其应用》
【Python 3.X】
语言风格轻松诙谐,讲解多种Python工具和第三方库
实例涉及商业、科研以及艺术领域使用Python开发各种应用
亚马逊最受欢迎的Python编程书之一,评分4.5
书中首先介绍了Python的基础知识,然后逐渐深入多种主题,结合教程和攻略式风格来讲解Python 3中的概念。每章结尾的练习可以帮助你巩固所学的知识。
本书会为你学习Python打下坚实的基础,包括测试、调试、代码复用的最佳实践以及其他开发技巧。
《Python编程入门(第3版)》
【Python 3.X 】
从算术运算、字符串、变量,到函数、数据结构、输入输出和异常处理,应有尽有
《父与子的编程之旅:与小卡特一起学Python》
【Python 2.X 】
原版Amazon 最受欢迎的青少年编程图书
最简单易学的内容组织方式,老少皆宜
第一版获Jolt大奖
本书中,Warren和Carter父子以亲切的笔调、通俗的语言,透彻全面地介绍了计算机编程世界。
他们以简单易学的Python语言为例,通过可爱的漫画、有趣的例子,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等编程的基本概念。
只要懂得计算机的基本操作,如启动程序、保存文件,任何人都可以跟随本书,由简入难,学会编写程序,甚至制作游戏。
本书内容经过教育专家的评审,经过孩子的亲身检验,并得到了家长的认可。
《编程导论》
【Python 2.7】
以麻省理工学院开放式课程(OpenCourseWare)中最受欢迎的计算机科学课程为基础,旨在培养读者的编程思维,使读者拥有计算机科学家的视野
本书涵盖了Python的大部分特性,重点介绍如何使用Python这门语言,共包含编程基础、Python程序设计语言、理解计算的关键概念、计算问题的解决技术等四个方面。
本书将Python语言特性和编程方法贯穿全书,目的是帮助读者在学习Python的同时掌握如何使用计算来解决有趣的问题。
《流畅的Python》
【兼顾Python 3和Python 2】
PSF研究员、知名PyCon演讲者心血之作
Python核心开发人员担纲技术审校
全面深入,对Python语言关键特性剖析到位
大量详尽代码示例,并附有主题相关高质量参考文献和视频链接
本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。
《Python项目开发实战(第2版)》
【Python 2.7】
网罗Python项目开发中的流程,让你的编程事半功倍
Python项目与封装/团队开发环境/问题驱动开发/源码管理(Mercurial) Jenkins持续集成(CI)/环境搭建与部署的自动化(Ansible)/Django框架……
这是一本偏工程的图书,没怎么讲Python语言基础知识,直接告诉你怎么搭建开发环境,做好代码管理和文档管理以及缺陷管理等工作。
《Python网络编程攻略》
【Python 2.7】
可作为任何一门网络编程课程中培养实践技能的补充材料
需要读者对Python语言及TCP/IP等基本的网络概念有了解,但即使不精通也能通过本书理解相关概念
本书全面介绍了Python网络编程涉及的重要问题,包括网络编程、系统和网络管理、网络监控以及Web应用开发。作者通过70多篇攻略,清晰简明地描述了各种网络任务和问题,提出了可用于多种场景的解决方案,并细致地分析了整个操作过程。
《Python网络编程(第3版)》
【Python 3.X】
涵盖网络编程所有经典话题,提供大量代码清单及示例
从应用开发角度介绍网络编程基本概念、模块以及第三方库
本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。
具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。
《Python性能分析与优化》
【Python 2.X】
全面掌握Python代码性能分析和优化方法
消除性能瓶颈,迅速改善程序性能
本书首先介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中进行性能分析实践能够取得的效果。
紧接着介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。
然后介绍一系列性能优化技术,最后一章会介绍一个具有实际意义的优化案例。
《精通Python设计模式》
【Python 3.X】
用现实例子展示各模式的关键特性
16种基本设计模式,轻松解决软件设计常见问题
本书分三部分,共16章介绍一些常用的设计模式。
第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;
第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;
第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。
《Flask Web开发:基于Python的Web应用开发实战》
【Python 2.7和3.3】
从安装与环境设置讲起,一步一步搭建服务器端Web应用
全流程讲解Web应用开发,给出最佳实践
本书共分三部分,全面介绍如何基于Python微框架Flask进行Web开发。
第一部分是Flask简介,介绍使用Flask框架及扩展开发Web程序的必备基础知识。
第二部分则给出一个实例,真正带领大家一步步开发完整的博客和社交应用Flasky,从而将前述知识融会贯通,付诸实践。
第三部分介绍了发布应用之前必须考虑的事项,如单元测试策略、性能分析技术、Flask程序的部署方式等。
《Python Web开发:测试驱动方法》
【(Django、Selenium)相关部分使用Python 3.3讲解】
亚马逊4.8星评好书
实战式TDD开发指南,使用Django等流行框架开发现代Web应用!
学习Django、Selenium、Git、jQuery和Mock,以及其他当前流行Web开发技术
“这本书很棒、很有趣,所讲的全都是重点知识。如果有人想用Python做测试、学习Django或者想使用Selenium,我极力推荐这本书。要使开发者保持头脑清醒,测试可谓至关重要。Harry完成了一项不可思议的工作,他不仅吸引了我们对测试的关注,而且还探索了切实可行的测试实践方案。”
——Michael Foord,Python核心开发者,unittest维护者
《数据科学入门》
【Python 2.7】
Google数据科学家、软件工程师Joel Grus作品
用Python从零开始讲解数据科学的重量级读本
数据科学、机器学习、模式识别领域必备
本书从零开始讲解数据科学。
具体内容包括Python简介,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法等。
作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,通过讲解基础数据科学工具和算法实现,带你快速跨入数据科学大门。
书中含大量数据科学领域的库、框架、模块和工具包。
《机器学习实战》
【Python 2.7】
最畅销机器学习图书
介绍并实现机器学习的主流算法
面向日常任务的高效实战内容
全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
《机器学习系统设计》
【Python 2.7及以上】
微软Bing核心团队成员推出
聚焦算法编写和编程方式
结合大量实例学会解决实际问题
本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。
《Python数据处理》
【Python 2.7】
将数据处理过程自动化!
全面掌握用Python进行爬虫抓取以及数据清洗与分析的方法,轻松实现高效数据处理!
本书采用基于项目的方法,介绍用Python完成数据获取、数据清洗、数据探索、数据呈现、数据规模化和自动化的过程。
主要内容包括:Python基础知识,如何从CSV、Excel、XML、JSON和PDF文件中提取数据,如何获取与存储数据,各种数据清洗与分析技术,数据可视化方法,如何从网站和API中提取数据。
《Python数据分析基础教程:NumPy学习指南(第2版)》
【Python 2.7】
NumPy中文入门教程,Python数据分析首选
从最基础的知识讲起,手把手带你进入大数据挖掘领域
囊括大量具有启发性与实用价值的实战案例
本书从NumPy安装讲起,逐渐过渡到数组对象、常用函数、矩阵运算、线性代数、金融函数、窗函数、质量控制等内容,致力于向初中级Python编程人员全面讲述NumPy及其使用。
另外,通过书中丰富的示例,你还将学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效。
《Python数据挖掘入门与实践》
【Python 3.4】
全面释放Python的数据分析能力
掌握大数据时代核心技术,轻松入门数据挖掘技术并将其应用于实际项目
本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的最佳实践!
《Python科学计算基础教程》
【Python 2.7及以上】
精彩案例展示Numpy等科学计算模块的强大功能和广泛应用
剖析Python关于并行与大数据计算的方法
总结科学计算的任务、难点以及最佳实践经验
本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。
其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。
《Python数据分析实战》
【Python 2.X】
了解Python在信息处理、管理和检索方面的强大功能
学会如何利用Python及其衍生工具处理、分析数据
三个真实Python数据分析案例,将理论付诸实践
《Python数据分析实战》展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。
《Python网络数据采集》
【Python 3.X】
原书4.6星好评,一本书搞定数据采集
涵盖数据抓取、数据挖掘和数据分析
提供详细代码示例,快速解决实际问题
本书介绍网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。
《Python计算机视觉编程》
【Python 2.6及以上】
亚马逊计算机视觉类图书No.1
详细剖析多种计算机视觉工具
大量示例极易上手
本书是计算机视觉编程的权威实践指南,通过Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、3D重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。
‘伍’ python向nas上写入数据很慢
Python向NAS上写入数据很慢可能有以下原因:
网络带宽限制:如果您的NAS和Python程序运行的计算机之间的网络带宽较低,数据传输速度就会变慢。
硬盘读写速度限制:如果您的NAS硬盘读写速度较慢,或者硬盘已经接近满负荷,写入数据的速度就会变慢。
Python程序的性能问题:如果您的Python程序写入数据的方式不够高效,或者存在其他性能问题,也会导凳此猜致写入数据的速度变慢。
针对这些问题,您可以尝试以下解决方案:
检查网络带宽:可以使用网络测试工具检查NAS和Python程序运行的计算机之间的网络带宽,如果网络枣型带宽较低,可以考虑升级网络设备或者使用其他网络传输方式。
检查NAS硬盘读写速度:可以使用硬盘测试工具检查NAS硬盘的读写速度,如果硬盘读写速度较慢,可以考虑升级硬盘或者使用其他存储设备。
优化Python程序:可以使用Python性能分析工具检查Python程序的性能问题,并进行优化。例如扒行,可以使用多线程或者异步IO等方式提高写入数据的效率。
总之,Python向NAS上写入数据很慢可能有多种原因,需要根据具体情况进行分析和解决。
‘陆’ 如何进行python性能分析
使用time工具粗糙定时
首先,我们可以使用快速然而粗糙的工具:古老的unix工具time,桥基来为我们的代码检测运行时间。
1 $ time python yourprogram.py
2
3 real 0m1.028s
4 user 0m0.001s
5 sys 0m0.003s
上面三个输入变量的意义在文章 stackoverflow article 中有详细介绍。简单的说:
real - 表示实际的程序运行时间
user - 表示程序轮消数在用户态的cpu总时间
sys - 表示在内核态的cpu总时间
通过sys和user时间的求和,你可以直观的得到系统上没有其他程序运行时你的程序运行所需要的CPU周期。
若sys和user时间之和远远少于real时间,那么你可以猜测你的程序的主要性能问题很可能与IO等待相关。
使用计时上下文管理器进行细粒度计时
我们的下一个技术涉及访问细粒度计时信息的直接代码指令。这是一小段代码,我发现使用专门的计时测量是非常重要的:
timer.py
01 import time
02
03 class Timer(object):
04 def __init__(self, verbose=False):
05 self.verbose = verbose
06
07 def __enter__(self):
08 self.start = time.time()
09 return self
10
11 def __exit__(self, *args):
12 self.end = time.time()
13 self.secs = self.end - self.start
14 self.msecs = self.secs * 1000 # millisecs
15 if self.verbose:
16 print 'elapsed time: %f ms' % self.msecs
为了使用它,你需要用Python的with关键字和Timer上下文管理器包装想要计时的代码块。它将会在你的代码块开始执行的时候启动计时器,在你的代码块结束的时候停止计时器。
这是一个使用上述代码片段的例子:
01 from timer import Timer
02 from redis import Redis
03 rdb = Redis()
04
05 with Timer() as t:
06 rdb.lpush("foo", "bar")
07 print "=> elasped lpush: %s s" % t.secs
08
09 with Timer as t:
10 rdb.lpop("foo")
11 print "=> elasped lpop: %s s" % t.secs
我经常将这些计时器的输出记录到文件中,这样就可以观察我的程序的性能如何随着时间进化。
使用分析器逐行统计时间和执行频率
Robert Kern有一个称作line_profiler的不错的项目,我经常使用它查看我的脚步中每行代码多快多频繁的被执行。
想要使用它,你需要通过pip安装该python包:
1 $ pip install line_profiler
一旦安装完成,你将会使用一个称做“line_profiler”的新模组和一个腊首“kernprof.py”可执行脚本。
想要使用该工具,首先修改你的源代码,在想要测量的函数上装饰@profile装饰器。不要担心,你不需要导入任何模组。kernprof.py脚本将会在执行的时候将它自动地注入到你的脚步的运行时。
primes.py
01 @profile
02 def primes(n):
03 if n==2:
04 return [2]
05 elif n<2:
06 return []
07 s=range(3,n+1,2)
08 mroot = n ** 0.5
09 half=(n+1)/2-1
10 i=0
11 m=3
12 while m <= mroot:
13 if s[i]:
14 j=(m*m-3)/2
15 s[j]=0
16 while j
17 s[j]=0
18 j+=m
19 i=i+1
20 m=2*i+3
21 return [2]+[x for x in s if x]
22 primes(100)
一旦你已经设置好了@profile装饰器,使用kernprof.py执行你的脚步。
1 $ kernprof.py -l -v fib.py
-l选项通知kernprof注入@profile装饰器到你的脚步的内建函数,-v选项通知kernprof在脚本执行完毕的时候显示计时信息。上述脚本的输出看起来像这样:
01 Wrote profile results to primes.py.lprof
02 Timer unit: 1e-06 s
03
04 File: primes.py
05 Function: primes at line 2
06 Total time: 0.00019 s
07
08 Line # Hits Time Per Hit % Time Line Contents
09 ==============================================================
10 2 @profile
11 3 def primes(n):
12 4 1 2 2.0 1.1 if n==2:
13 5 return [2]
14 6 1 1 1.0 0.5 elif n<2:
15 7 return []
16 8 1 4 4.0 2.1 s=range(3,n+1,2)
17 9 1 10 10.0 5.3 mroot = n ** 0.5
18 10 1 2 2.0 1.1 half=(n+1)/2-1
19 11 1 1 1.0 0.5 i=0
20 12 1 1 1.0 0.5 m=3
21 13 5 7 1.4 3.7 while m <= mroot:
22 14 4 4 1.0 2.1 if s[i]:
23 15 3 4 1.3 2.1 j=(m*m-3)/2
24 16 3 4 1.3 2.1 s[j]=0
25 17 31 31 1.0 16.3 while j
26 18 28 28 1.0 14.7 s[j]=0
27 19 28 29 1.0 15.3 j+=m
28 20 4 4 1.0 2.1 i=i+1
29 21 4 4 1.0 2.1 m=2*i+3
30 22 50 54 1.1 28.4 return [2]+[x for x in s if x]
寻找具有高Hits值或高Time值的行。这些就是可以通过优化带来最大改善的地方。
程序使用了多少内存?
现在我们对计时有了较好的理解,那么让我们继续弄清楚程序使用了多少内存。我们很幸运,Fabian Pedregosa模仿Robert Kern的line_profiler实现了一个不错的内存分析器。
首先使用pip安装:
1 $ pip install -U memory_profiler
2 $ pip install psutil
(这里建议安装psutil包,因为它可以大大改善memory_profiler的性能)。
就像line_profiler,memory_profiler也需要在感兴趣的函数上面装饰@profile装饰器:
1 @profile
2 def primes(n):
3 ...
4 ...
想要观察你的函数使用了多少内存,像下面这样执行:
1 $ python -m memory_profiler primes.py
一旦程序退出,你将会看到看起来像这样的输出:
01 Filename: primes.py
02
03 Line # Mem usage Increment Line Contents
04 ==============================================
05 2 @profile
06 3 7.9219 MB 0.0000 MB def primes(n):
07 4 7.9219 MB 0.0000 MB if n==2:
08 5 return [2]
09 6 7.9219 MB 0.0000 MB elif n<2:
10 7 return []
11 8 7.9219 MB 0.0000 MB s=range(3,n+1,2)
12 9 7.9258 MB 0.0039 MB mroot = n ** 0.5
13 10 7.9258 MB 0.0000 MB half=(n+1)/2-1
14 11 7.9258 MB 0.0000 MB i=0
15 12 7.9258 MB 0.0000 MB m=3
16 13 7.9297 MB 0.0039 MB while m <= mroot:
17 14 7.9297 MB 0.0000 MB if s[i]:
18 15 7.9297 MB 0.0000 MB j=(m*m-3)/2
19 16 7.9258 MB -0.0039 MB s[j]=0
20 17 7.9297 MB 0.0039 MB while j
21 18 7.9297 MB 0.0000 MB s[j]=0
22 19 7.9297 MB 0.0000 MB j+=m
23 20 7.9297 MB 0.0000 MB i=i+1
24 21 7.9297 MB 0.0000 MB m=2*i+3
25 22 7.9297 MB 0.0000 MB return [2]+[x for x in s if x]
line_profiler和memory_profiler的IPython快捷方式
memory_profiler和line_profiler有一个鲜为人知的小窍门,两者都有在IPython中的快捷命令。你需要做的就是在IPython会话中输入以下内容:
1 %load_ext memory_profiler
2 %load_ext line_profiler
在这样做的时候你需要访问魔法命令%lprun和%mprun,它们的行为类似于他们的命令行形式。主要区别是你不需要使用@profiledecorator来修饰你要分析的函数。只需要在IPython会话中像先前一样直接运行分析:
1 In [1]: from primes import primes
2 In [2]: %mprun -f primes primes(1000)
3 In [3]: %lprun -f primes primes(1000)
这样可以节省你很多时间和精力,因为你的源代码不需要为使用这些分析命令而进行修改。
内存泄漏在哪里?
cPython解释器使用引用计数做为记录内存使用的主要方法。这意味着每个对象包含一个计数器,当某处对该对象的引用被存储时计数器增加,当引用被删除时计数器递减。当计数器到达零时,cPython解释器就知道该对象不再被使用,所以删除对象,释放占用的内存。
如果程序中不再被使用的对象的引用一直被占有,那么就经常发生内存泄漏。
查找这种“内存泄漏”最快的方式是使用Marius Gedminas编写的objgraph,这是一个极好的工具。该工具允许你查看内存中对象的数量,定位含有该对象的引用的所有代码的位置。
‘柒’ 后端编程Python3-调试、测试和性能剖析(下)
单元测试(Unit Testing)
为程序编写测试——如果做的到位——有助于减少bug的出现,并可以提高我们对程序按预期目标运行的信心。通常,测试并不能保证正确性,因为对大多数程序而言, 可能的输入范围以及可能的计算范围是如此之大,只有其中最小的一部分能被实际地进 行测试。尽管如此,通过仔细地选择测试的方法和目标,可以提高代码的质量。
大量不同类型的测试都可以进行,比如可用性测试、功能测试以及整合测试等。这里, 我们只讲单元测试一对单独的函数、类与方法进行测试,确保其符合预期的行为。
TDD的一个关键点是,当我们想添加一个功能时——比如为类添加一个方法—— 我们首次为其编写一个测试用例。当然,测试将失败,因为我们还没有实际编写该方法。现在,我们编写该方法,一旦方法通过了测试,就可以返回所有测试,确保我们新添加的代码没有任何预期外的副作用。一旦所有测试运行完毕(包括我们为新功能编写的测试),就可以对我们的代码进行检查,并有理有据地相信程序行为符合我们的期望——当然,前提是我们的测试是适当的。
比如,我们编写了一个函数,该函数在特定的索引位置插入一个字符串,可以像下面这样开始我们的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,“-”))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
对不返回任何参数的函数或方法(通常返回None),我们通常赋予其由pass构成的一个suite,对那些返回值被试用的,我们或者返回一个常数(比如0),或者某个不变的参数——这也是我们这里所做的。(在更复杂的情况下,返回fake对象可能更有用一一对这样的类,提供mock对象的第三方模块是可用的。)
运行doctest时会失败,并列出每个预期内的字符串('ABCD-EF'、'ABCDE-F' 等),及其实际获取的字符串(所有的都是'ABCD-EF')。一旦确定doctest是充分的和正确的,就可以编写该函数的主体部分,在本例中只是简单的return string[:position] + insert+string[position:]。(如果我们编写的是 return string[:position] + insert,之后复制 string [:position]并将其粘贴在末尾以便减少一些输入操作,那么doctest会立即提示错误。)
Python的标准库提供了两个单元测试模块,一个是doctest,这里和前面都简单地提到过,另一个是unittest。此外,还有一些可用于Python的第三方测试工具。其中最着名的两个是nose (code.google.com/p/python-nose)与py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比标准的unittest 模块更广泛的功能,同时保持与该模块的兼容性,py.test则采用了与unittest有些不同的方法,试图尽可能消除样板测试代码。这两个第三方模块都支持测试发现,因此没必要写一个总体的测试程序——因为模块将自己搜索测试程序。这使得测试整个代码树或某一部分 (比如那些已经起作用的模块)变得很容易。那些对测试严重关切的人,在决定使用哪个测试工具之前,对这两个(以及任何其他有吸引力的)第三方模块进行研究都是值 得的。
创建doctest是直截了当的:我们在模块中编写测试、函数、类与方法的docstrings。 对于模块,我们简单地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序内部使用doctest也是可能的。比如,blocks.py程序(其模块在后面)有自己函数的doctest,但以如下代码结尾:
if __name__== "__main__":
main()
这里简单地调用了程序的main()函数,并且没有执行程序的doctest。要实验程序的 doctest,有两种方法。一种是导入doctest模块,之后运行程序---比如,在控制台中输 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用类似于 C:Python3 lpython.exe 这样的形式替代python3)。如果所有测试运行良好,就没有输出,因此,我们可能宁愿执行python3-m doctest blocks.py-v,因为这会列出每个执行的doctest,并在最后给出结果摘要。
另一种执行doctest的方法是使用unittest模块创建单独的测试程序。在概念上, unittest模块是根据Java的JUnit单元测试库进行建模的,并用于创建包含测试用例的测试套件。unittest模块可以基于doctests创建测试用例,而不需要知道程序或模块包含的任何事物——只要知道其包含doctest即可。因此,为给blocks.py程序制作一个测试套件,我们可以创建如下的简单程序(将其称为test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用这种方法,程序的名称上会有一个隐含的约束:程序名必须是有效的模块名。因此,名为convert-incidents.py的程序的测试不能写成这样。因为import convert-incidents不是有效的,在Python标识符中,连接符是无效的(避开这一约束是可能的,但最简单的解决方案是使用总是有效模块名的程序文件名,比如,使用下划线替换连接符)。这里展示的结构(创建一个测试套件,添加一个或多个测试用例或测试套件,运行总体的测试套件,输出结果)是典型的机遇unittest的测试。运行时,这一特定实例产生如下结果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次执行一个测试用例时,都会输出一个句点(因此上面的输出最前面有3个句点),之后是一行连接符,再之后是测试摘要(如果有任何一个测试失败,就会有更多的输出信息)。
如果我们尝试将测试分离开(典型情况下是要测试的每个程序和模块都有一个测试用例),就不要再使用doctests,而是直接使用unittest模块的功能——尤其是我们习惯于使用JUnit方法进行测试时ounittest模块会将测试分离于代码——对大型项目(测试编写人员与开发人员可能不一致)而言,这种方法特别有用。此外,unittest单元测试编写为独立的Python模块,因此,不会像在docstring内部编写测试用例时受到兼容性和明智性的限制。
unittest模块定义了 4个关键概念。测试夹具是一个用于描述创建测试(以及用完之后将其清理)所必需的代码的术语,典型实例是创建测试所用的一个输入文件,最后删除输入文件与结果输出文件。测试套件是一组测试用例的组合。测试用例是测试的基本单元—我们很快就会看到实例。测试运行者是执行一个或多个测试套件的对象。
典型情况下,测试套件是通过创建unittest.TestCase的子类实现的,其中每个名称 以“test”开头的方法都是一个测试用例。如果我们需要完成任何创建操作,就可以在一个名为setUp()的方法中实现;类似地,对任何清理操作,也可以实现一个名为 tearDown()的方法。在测试内部,有大量可供我们使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(对于测试浮点数很有用)、assertRaises() 以及更多,还包括很多对应的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模块进行了很好的归档,并且提供了大量功能,但在这里我们只是通过一 个非常简单的测试套件来感受一下该模块的使用。这里将要使用的实例,该练习要求创建一个Atomic模块,该模块可以用作一 个上下文管理器,以确保或者所有改变都应用于某个列表、集合或字典,或者所有改变都不应用。作为解决方案提供的Atomic.py模块使用30行代码来实现Atomic类, 并提供了 100行左右的模块doctest。这里,我们将创建test_Atomic.py模块,并使用 unittest测试替换doctest,以便可以删除doctest。
在编写测试模块之前,我们需要思考都需要哪些测试。我们需要测试3种不同的数据类型:列表、集合与字典。对于列表,需要测试的是插入项、删除项或修改项的值。对于集合,我们必须测试向其中添加或删除一个项。对于字典,我们必须测试的是插入一个项、修改一个项的值、删除一个项。此外,还必须要测试的是在失败的情况下,不会有任何改变实际生效。
结构上看,测试不同数据类型实质上是一样的,因此,我们将只为测试列表编写测试用例,而将其他的留作练习。test_Atomic.py模块必须导入unittest模块与要进行测试的Atomic模块。
创建unittest文件时,我们通常创建的是模块而非程序。在每个模块内部,我们定义一个或多个unittest.TestCase子类。比如,test_Atomic.py模块中仅一个单独的 unittest-TestCase子类,也就是TestAtomic (稍后将对其进行讲解),并以如下两行结束:
if name == "__main__":
unittest.main()
这两行使得该模块可以单独运行。当然,该模块也可以被导入并从其他测试程序中运行——如果这只是多个测试套件中的一个,这一点是有意义的。
如果想要从其他测试程序中运行test_Atomic.py模块,那么可以编写一个与此类似的程序。我们习惯于使用unittest模块执行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
这里,我们已经创建了一个单独的套件,这是通过让unittest模块读取test_Atomic 模块实现的,并且使用其每一个test*()方法(本实例中是test_list_success()、test_list_fail(),稍后很快就会看到)作为测试用例。
我们现在将查看TestAtomic类的实现。对通常的子类(不包括unittest.TestCase 子类),不怎么常见的是,没有必要实现初始化程序。在这一案例中,我们将需要建立 一个方法,但不需要清理方法,并且我们将实现两个测试用例。
def setUp(self):
self.original_list = list(range(10))
我们已经使用了 unittest.TestCase.setUp()方法来创建单独的测试数据片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
这里,我们直接在测试方法中编写了测试代码,而不需要一个内部函数,也不再使用unittest.TestCase.assertRaised()作为上下文管理器(期望代码产生AttributeError)。 最后我们也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我们已经看到的,Python的测试模块易于使用,并且极为有用,在我们使用 TDD的情况下更是如此。它们还有比这里展示的要多得多的大量功能与特征——比如,跳过测试的能力,这有助于理解平台差别——并且这些都有很好的文档支持。缺失的一个功能——但nose与py.test提供了——是测试发现,尽管这一特征被期望在后续的Python版本(或许与Python 3.2—起)中出现。
性能剖析(Profiling)
如果程序运行很慢,或者消耗了比预期内要多得多的内存,那么问题通常是选择的算法或数据结构不合适,或者是以低效的方式进行实现。不管问题的原因是什么, 最好的方法都是准确地找到问题发生的地方,而不只是检査代码并试图对其进行优化。 随机优化会导致引入bug,或者对程序中本来对程序整体性能并没有实际影响的部分进行提速,而这并非解释器耗费大部分时间的地方。
在深入讨论profiling之前,注意一些易于学习和使用的Python程序设计习惯是有意义的,并且对提高程序性能不无裨益。这些技术都不是特定于某个Python版本的, 而是合理的Python程序设计风格。第一,在需要只读序列时,最好使用元组而非列表; 第二,使用生成器,而不是创建大的元组和列表并在其上进行迭代处理;第三,尽量使用Python内置的数据结构 dicts、lists、tuples 而不实现自己的自定义结构,因为内置的数据结构都是经过了高度优化的;第四,从小字符串中产生大字符串时, 不要对小字符串进行连接,而是在列表中累积,最后将字符串行表结合成为一个单独的字符串;第五,也是最后一点,如果某个对象(包括函数或方法)需要多次使用属性进行访问(比如访问模块中的某个函数),或从某个数据结构中进行访问,那么较好的做法是创建并使用一个局部变量来访问该对象,以便提供更快的访问速度。
Python标准库提供了两个特别有用的模块,可以辅助调査代码的性能问题。一个是timeit模块——该模块可用于对一小段Python代码进行计时,并可用于诸如对两个或多个特定函数或方法的性能进行比较等场合。另一个是cProfile模块,可用于profile 程序的性能——该模块对调用计数与次数进行了详细分解,以便发现性能瓶颈所在。
为了解timeit模块,我们将查看一些小实例。假定有3个函数function_a()、 function_b()、function_c(), 3个函数执行同样的计算,但分别使用不同的算法。如果将这些函数放于同一个模块中(或分别导入),就可以使用timeit模块对其进行运行和比较。下面给出的是模块最后使用的代码:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
赋予timeit.Timer()构造子的第一个参数是我们想要执行并计时的代码,其形式是字符串。这里,该字符串是“function_a(X,Y)”;第二个参数是可选的,还是一个待执行的字符串,这一次是在待计时的代码之前,以便提供一些建立工作。这里,我们从 __main__ (即this)模块导入了待测试的函数,还有两个作为输入数据传入的变量(X 与Y),这两个变量在该模块中是作为全局变量提供的。我们也可以很轻易地像从其他模块中导入数据一样来进行导入操作。
调用timeit.Timer对象的timeit()方法时,首先将执行构造子的第二个参数(如果有), 之后执行构造子的第一个参数并对其执行时间进行计时。timeit.Timer.timeit()方法的返回值是以秒计数的时间,类型是float。默认情况下,timeit()方法重复100万次,并返回所 有这些执行的总秒数,但在这一特定案例中,只需要1000次反复就可以给出有用的结果, 因此对重复计数次数进行了显式指定。在对每个函数进行计时后,使用重复次数对总数进行除法操作,就得到了平均执行时间,并在控制台中打印出函数名与执行时间。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在这一实例中,function_a()显然是最快的——至少对于这里使用的输入数据而言。 在有些情况下一一比如输入数据不同会对性能产生巨大影响——可能需要使用多组输入数据对每个函数进行测试,以便覆盖有代表性的测试用例,并对总执行时间或平均执行时间进行比较。
有时监控自己的代码进行计时并不是很方便,因此timeit模块提供了一种在命令行中对代码执行时间进行计时的途径。比如,要对MyMole.py模块中的函数function_a()进行计时,可以在控制台中输入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(与通常所做的一样,对 Windows 环境,我们必须使用类似于C:Python3lpython.exe这样的内容来替换python3)。-m选项用于Python 解释器,使其可以加载指定的模块(这里是timeit),其他选项则由timeit模块进行处理。 -n选项指定了循环计数次数,-s选项指定了要建立,最后一个参数是要执行和计时的代码。命令完成后,会向控制台中打印运行结果,比如:
1000 loops, best of 3: 1.41 msec per loop
之后我们可以轻易地对其他两个函数进行计时,以便对其进行整体的比较。
cProfile模块(或者profile模块,这里统称为cProfile模块)也可以用于比较函数 与方法的性能。与只是提供原始计时的timeit模块不同的是,cProfile模块精确地展示 了有什么被调用以及每个调用耗费了多少时间。下面是用于比较与前面一样的3个函数的代码:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我们必须将重复的次数放置在要传递给cProfile.run()函数的代码内部,但不需要做任何创建,因为模块函数会使用内省来寻找需要使用的函数与变量。这里没有使用显式的print()语句,因为默认情况下,cProfile.run()函数会在控制台中打印其输出。下面给出的是所有函数的相关结果(有些无关行被省略,格式也进行了稍许调整,以便与页面适应):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("调用的次数")列列出了对指定函数(在filename:lineno(function)中列出) 的调用次数。回想一下我们重复了 1000次调用,因此必须将这个次数记住。tottime (“总的时间”)列列出了某个函数中耗费的总时间,但是排除了函数调用的其他函数内部花费的时间。第一个percall列列出了对函数的每次调用的平均时间(tottime // ncalls)。 cumtime ("累积时间")列出了在函数中耗费的时间,并且包含了函数调用的其他函数内部花费的时间。第二个percall列列出了对函数的每次调用的平均时间,包括其调用的函数耗费的时间。
这种输出信息要比timeit模块的原始计时信息富有启发意义的多。我们立即可以发现,function_b()与function_c()使用了被调用5000次以上的生成器,使得它们的速度至少要比function_a()慢10倍以上。并且,function_b()调用了更多通常意义上的函数,包括调用内置的sorted()函数,这使得其几乎比function_c()还要慢两倍。当然,timeit() 模块提供了足够的信息来查看计时上存在的这些差别,但cProfile模块允许我们了解为什么会存在这些差别。正如timeit模块允许对代码进行计时而又不需要对其监控一样,cProfile模块也可以做到这一点。然而,从命令行使用cProfile模块时,我们不能精确地指定要执行的 是什么——而只是执行给定的程序或模块,并报告所有这些的计时结果。需要使用的 命令行是python3 -m cProfile programOrMole.py,产生的输出信息与前面看到的一 样,下面给出的是输出信息样例,格式上进行了一些调整,并忽略了大多数行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile术语学中,原始调用指的就是非递归的函数调用。
以这种方式使用cProfile模块对于识别值得进一步研究的区域是有用的。比如,这里 我们可以清晰地看到function_b()需要耗费更长的时间,但是我们怎样获取进一步的详细资料?我们可以使用cProfile.run("function_b()")来替换对function_b()的调用。或者可以保存完全的profile数据并使用pstats模块对其进行分析。要保存profile,就必须对命令行进行稍许修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之后可以对 profile 数据进行分析,比如启动IDLE,导入pstats模块,赋予其已保存的profileDataFile,或者也可以在控制台中交互式地使用pstats。
下面给出的是一个非常短的控制台会话实例,为使其适合页面展示,进行了适当调整,我们自己的输入则以粗体展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
输入help可以获取命令列表,help后面跟随命令名可以获取该命令的更多信息。比如, help stats将列出可以赋予stats命令的参数。还有其他一些可用的工具,可以提供profile数据的图形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 该工具需要依赖于wxPython GUI库。
使用timeit与cProfile模块,我们可以识别出我们自己代码中哪些区域会耗费超过预期的时间;使用cProfile模块,还可以准确算岀时间消耗在哪里。
以上内容部分摘自视频课程 05后端编程Python-19调试、测试和性能调优(下) ,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。
‘捌’ python有什么进阶的书
1、《Python核心编程》第二版以及第三版
这是一本有关于Python开发的权威指南,无论你是想在哪个Python方向发展,相信这本书都会成为你好助手。
2、《流畅的Python》
该书更像是一本工具书,你可以从本书的任意一章开始阅读,如果按照作者写作时的构思来说,本书一共分为六个独立的部分,读者最好按照顺序来阅读,收获会更多。
3、《Effective+Python》编写高质量Python代码的59个有效方法
这本书无论是对初学者还是熟练者都有较大意义,对于初学者,该书展示了大体轮廓,使我们能够知道Python的强项和弱项,在知道这些特性后,开发者就可以结合自己的兴趣与需求,有选择、有顺序的学习。
对于熟练者而言,可以把书中的心得与自己的经验相比对,看看自己还有哪些区域尚未深入研究,并思考一下书中的方案与自己常用的方案各有什么优点和缺点。总之,这本书既可以像字典一样查阅,额可以像普通图书那样阅读。
4、《精通Python设计模式》
这本书分为三部分,共16个章节,介绍一些常用的设计模式,第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;第二部分介绍处理一个系统中不同实体,如类、对象等之间关系的设计模式;第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。
5、《Python高级编程》
本书通过大量的实例,介绍了Python语言的最佳实践和敏捷开发的方法,并涉及整个软件生命周期的高级主题,诸如持续集成、版本控制系统、包的发行和分发、开发模式、文档编写等。
本书针对具备一定的Python基础并希望通过在项目中应用最佳实践和新的开发技术来提升自己的Python开发人员。
6、《Python性能分析与优化》
这本书首先会介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中的进行性能分析实践能够取得的效果。紧接着将介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。然后会讨论一系列性能优化技术,最后一章会介绍一个具有实际意义的优化示例。
7、《Python开发实战》第1、2版
本书来自真正的开发现场,是众多极客们在真实项目中的经验总结。
作者从Python的环境搭建开始讲起,介绍了以web应用开发方法、任务管理,以及评审、测试及高效部署、服务器调试等内容,尽可能网罗了Python开发流程中的方方面面,在这里Python仅仅是一个载体,很多知识点在非Python下也适用,这也是这本书最大的特点。
8、《Python高手之路》第3版
首先,这肯定不是一本入门书,书中没有Python关键字和for循环等,它完全从实战的角度出发,对构建一个完整的Python应用所需掌握的知识进行系统而完整的介绍。更重要的是本书的作者是开源项目OpenStack的PTL之一,所以这本书结合了Python在OpenStack中的应用进行讲解,非常具有实战指导意义。
众多python培训视频,尽在python学习网,欢迎在线学习!
‘玖’ 如何提高python的运行效率
窍门一:关键代码使用外部功能包
Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意。使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率。这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包。简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率。以下是一些你可以选择用来提升效率的功能包:
Cython
Pylnlne
PyPy
Pyrex
这些功能包的用处各有不同。比如说,使用C语言的数据类型,可以使涉及内存操作的任务更高效或者更直观。Pyrex就能帮助Python延展出这样的功能。Pylnline能使你在Python应用中直接使用C代码。内联代码是独立编译的,但是它把所有编译文件都保存在某处,并能充分利用C语言提供的高效率。
窍门二:在排序时使用键
Python含有许多古老的排序规则,这些规则在你创建定制的排序方法时会占用很多时间,而这些排序方法运行时也会拖延程序实际的运行速度。最佳的排序方法其实是尽可能多地使用键和内置的sort()方法。譬如,拿下面的代码来说:
import operator
somelist = [(1, 5,]
在每段例子里,list都是根据你选择的用作关键参数的索引进行排序的。这个方法不仅对数值类型有效,还同样适用于字符串类型。
窍门三:针对循环的优化
每一种编程语言都强调最优化的循环方案。当使用Python时,你可以借助丰富的技巧让循环程序跑得更快。然而,开发者们经常遗忘的一个技巧是:尽量避免在循环中访问变量的属性。譬如,拿下面的代码来说:
lowerlist = ['this', 'is', 'lowercase']
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = ['THIS', 'IS', 'LOWERCASE']
每次你调用str.upper, Python都会计算这个式子的值。然而,如果你把这个求值赋值给一个变量,那么求值的结果就能提前知道,Python程序就能运行得更快。因此,关键就是尽可能减小Python在循环中的工作量。因为Python解释执行的特性,在上面的例子中会大大减慢它的速度。
(注意:优化循环的方法还有很多,这只是其中之一。比如,很多程序员会认为,列表推导式是提高循环速度的最佳方法。关键在于,优化循环方案是提高应用程序运行速度的上佳选择。)
窍门四:使用较新的Python版本
如果你在网上搜索Python,你会发现数不尽的信息都是关于如何升级Python版本。通常,每个版本的Python都会包含优化内容,使其运行速度优于之前的版本。但是,限制因素在于,你最喜欢的函数库有没有同步更新支持新的Python版本。与其争论函数库是否应该更新,关键在于新的Python版本是否足够高效来支持这一更新。
你要保证自己的代码在新版本里还能运行。你需要使用新的函数库才能体验新的Python版本,然后你需要在做出关键性的改动时检查自己的应用。只有当你完成必要的修正之后,你才能体会新版本的不同。
然而,如果你只是确保自己的应用在新版本中可以运行,你很可能会错过新版本提供的新特性。一旦你决定更新,请分析你的应用在新版本下的表现,并检查可能出问题的部分,然后优先针对这些部分应用新版本的特性。只有这样,用户才能在更新之初就觉察到应用性能的改观。
窍门五:尝试多种编码方法
每次创建应用时都使用同一种编码方法几乎无一例外会导致应用的运行效率不尽人意。可以在程序分析时尝试一些试验性的办法。譬如说,在处理字典中的数据项时,你既可以使用安全的方法,先确保数据项已经存在再进行更新,也可以直接对数据项进行更新,把不存在的数据项作为特例分开处理。请看下面第一段代码:
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
当一开始myDict为空时,这段代码会跑得比较快。然而,通常情况下,myDict填满了数据,至少填有大部分数据,这时换另一种方法会更有效率。
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在两种方法中输出结果都是一样的。区别在于输出是如何获得的。跳出常规的思维模式,创建新的编程技巧能使你的应用更有效率。
窍门六:交叉编译你的应用
开发者有时会忘记计算机其实并不理解用来创建现代应用程序的编程语言。计算机理解的是机器语言。为了运行你的应用,你借助一个应用将你所编的人类可读的代码转换成机器可读的代码。有时,你用一种诸如Python这样的语言编写应用,再以C++这样的语言运行你的应用,这在运行的角度来说,是可行的。关键在于,你想你的应用完成什么事情,而你的主机系统能提供什么样的资源。
Nuitka是一款有趣的交叉编译器,能将你的Python代码转化成C++代码。这样,你就可以在native模式下执行自己的应用,而无需依赖于解释器程序。你会发现自己的应用运行效率有了较大的提高,但是这会因平台和任务的差异而有所不同。
(注意:Nuitka现在还处在测试阶段,所以在实际应用中请多加注意。实际上,当下最好还是把它用于实验。此外,关于交叉编译是否为提高运行效率的最佳方法还存在讨论的空间。开发者已经使用交叉编译多年,用来提高应用的速度。记住,每一种解决办法都有利有弊,在把它用于生产环境之前请仔细权衡。)
在使用交叉编译器时,记得确保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。为了让解决方案生效,你需要一个Python解释器和一个C++编译器。Nuitka支持许多C++编译器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。
交叉编译可能造成一些严重问题。比如,在使用Nuitka时,你会发现即便是一个小程序也会消耗巨大的驱动空间。因为Nuitka借助一系列的动态链接库(DDLs)来执行Python的功能。因此,如果你用的是一个资源很有限的系统,这种方法或许不太可行。
‘拾’ python写算法不好
基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。
可执行伪代码
Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。
Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。
Python比较流行
Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。
在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。
Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。
Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。
Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。
Python语言的特色
诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。
Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。
所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。
——鲍比·奈特
也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。
Python语言的缺点
Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。
如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。