导航:首页 > 编程语言 > python物体识别

python物体识别

发布时间:2023-05-17 09:09:10

1. python3在一张图片上找出的两个相同的图形,并现实坐标。

这个事情的基本思路是先将这个图片分成两个图片,具体步骤如下

  1. 这两个图片应该是一个大一个小,然后将小的那个作为基准,计算出小的那个图的灰度(称为A),然后将将大的那个按小的这个尺寸分成N个,分别计算着N个的灰度。

  2. 计算两个灰度图像之间的结构相似度指数,其实就是计算A和那N个小图的结构相似度指数。

  3. 通过这个结构相识度的数据,我们基本可以判断A是不是包含了相同图像的一部分,如果不是的话,将这个小的图移动到相邻的部分,然后重复1,2. 当计算完全部以后,找到机构相似度最高的那两个图,基本上相同图形就在这两个里面了。

里面的话,你需要用到openCV 和 Python 两个工具以及scikit-image和imutils。具体安装的流程你可以搜索一下。

2. OpenCV+Python特征提取算法与图像描述符之SIFT / SURF / ORB

算法效果比较博文

用于表示和量化图像的数字列表,简单理解成将图片转化为一个数字列表世灶表示。特征向量中用来描述图片的各种属性的向量称为特征矢量。

参考
是一种算法和方法,输入1个图像,返回多个特征向量(主要用来处理图像的局部,往往会把多个特征向量组成一个一维的向量)。主要用于图像匹配(视觉检测),匹配图像中的物品。

SIFT论文
原理
opencv官网解释
实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。

尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量。
其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

对现实中物体的描述一定要在一个十分重要的前提下进行,这个前提就是对自然界建模时的尺度。当用一个机器视觉系统分析未知场景时,计算机没有办法预先知道图像中物体的尺度,因此我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。图像的尺度空间表达指的是图像的所有尺度下的描述。

KeyPoint数据结构解析

SURF论文
原理
opencv官网解释
SURF是SIFT的加速版,它善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。在SIFT中使用DoG对LoG进行近似,而在SURF中使用盒子滤波器对LoG进行近似,这样就可以使用积分图像了(计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关)。总之,SURF最大的特点在于采用了Haar特征以及积分图改团像的概念,大大加快了程序的运行效率。

因为专利原因,OpenCV3.3开核返橘始不再免费开放SIFT\SURF,需要免费的请使用ORB算法

ORB算法综合了FAST角点检测算法和BRIEFF描述符。

算法原理
opencv官方文档
FAST只是一种特征点检测算法,并不涉及特征点的特征描述。

论文
opencv官方文档
中文版
Brief是Binary Robust Independent Elementary Features的缩写。这个特征描述子是由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。

1:不具备旋转不变性。
2:对噪声敏感
3:不具备尺度不变性。

ORB论文
OpenCV官方文档

ORB采用了FAST作为特征点检测算子,特征点的主方向是通过矩(moment)计算而来解决了BRIEF不具备旋转不变性的问题。
ORB还做了这样的改进,不再使用pixel-pair,而是使用9×9的patch-pair,也就是说,对比patch的像素值之和,解决了BRIEF对噪声敏感的问题。
关于计算速度:
ORB是sift的100倍,是surf的10倍。

对图片数据、特征分布的一种统计
对数据空间(bin)进行量化

Kmeans

边缘:尺度问题->不同的标准差 捕捉到不同尺度的边缘
斑点 Blob:二阶高斯导数滤波LoG

关键点(keypoint):不同视角图片之间的映射,图片配准、拼接、运动跟踪、物体识别、机器人导航、3D重建

SIFT\SURF

3. 目标跟踪(5)使用 Opencv 和 Python 进行对象跟踪

在本教程中,我们将学习如何基于 Opencv 和 Python 实现对象跟踪。

首先必须明确目标检测和目标跟踪有什么区别:

我们将首先讨论对象检测,然后讨论如何将对象跟踪应用于检测。

可能有不同的应用,例如,计算某个区域有多少人,检查传送带上有多少物体通过,或者计算高速公路上的车辆。

当然,看过本教程后,您会很容易地想到数以千计的想孙腔没法应用于现实生活或可能应用于工业。

在本教程中,我们将使用 3 个文件:

首先我们需要调用highway.mp4文件并创建一个mask:


正如您在示例代码中看到的,我们还使用了 函数,该函数返回背景比率(background ratio),然后创建mask。

mask可视化结果:

但是,如您所见,图像中有很多噪点。因此,让我们通过删除所有较小的元素来改进提取,并将我们的注意力集中在大于某个面积的对象上。


使用 OpenCV 的cv2.drawContours函数绘制轮廓,我们得到了这个结果。

就本教程而言,分析整个窗口并不重要。我们只对计算在某个点通过的所有车辆感兴趣,因此,我们必须定义一个感兴趣的区域 ROI 并仅在该区域应用mask。


结果可视化如下:

函数 cv2. 是在开始时添加的,没有定义参数,现在让我们看看如何进一步改进我们的结果。history是第一个参数,在这种情况下,它设置为 100,因为相机是固定的。varThreshold改为 40,因为该值越低,误报的可能性就越大。在这种情况下,我们只对较大的对象感兴趣。


在继续处理矩形之前,我们对图像进行了进一步的清理。为此,阈值函数就派上用场了。从我们的mask开始,我们告诉它我们只想显示白色或黑色值,因此通过编写254, 255,只会考虑 254 和 255 之间的值。

然后我们将找到的对象的坐标插入到 if 条件中并绘制矩形


这是最终结果:

我们现在只需导入和集成跟踪功能。


一旦创建了对象,我们必须获取边界框的每个位置并将它们插入到单个数组中。

通过在屏幕上显示结果,您可以看到所有通过 ROI 的通道是如何被识别的,则纳以及它们的位置是如何插入到特定的数组中的。显然,识别的摩托车越多,我们的数组就越大。

现在让我们将带圆行有位置的数组传递给tracker.update()。我们将再次获得一个包含位置的数组,但此外,将为每个对象分配一个唯一的 ID。

从代码中可以看出,我们可以使用 for 循环分析所有内容。此时我们只需要绘制矩形并显示车辆 ID。

在图像中,您可以看到结果


main.py


从视频中也可以看到,我们已经获得了我们在本教程开始时设置的结果。

但是,您必须将其视为练习或起点,因为关于这个主题有很多话要说,而本教程的目的只是让您了解对象跟踪的原理。

如果你想将 Object Tracking 集成到你的项目中,你应该使用更可靠和先进的对象检测方法,以及跟踪方法。

完整代码地址:私信“333”直接获取或者“链接”

4. 数字图像处理基于Python如何数一张图片的物体有多少个

如果要使用Python进行数字图像处理,可以使用OpenCV库来数一张图片的物体有多少个。

下面是一个简单的例子,可以使用OpenCV库来数一张图片中的小球数量:
import cv2

# 读取图片
img = cv2.imread("balls.jpg")

# 将图片转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 使用阈值分割法,得到二值图
thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1]

# 寻找图像中的轮廓
cnts = cv2.findContours(thresh.(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

# 显示图像中的轮廓数量
print("图像中的轮廓数量:{}".format(len(cnts)))

5. 怎么学会python库

学习Python库,首先要知道Python库有哪些功能与作用,再了解如何去使用,掌握使用语法,然后再实践,多多使用就可以掌握了,以下是十大比较受欢迎的机器学习库:
1. Pipenv
Pipenv 是 Kenneth Reitz 的业余项目,旨在将其他软件包(例如 npm 和 yarn)整合到 Python 里。它不需要安装 virtualenv, virtualenvwrapper,不用管理 requirements.txt 文件,并且不用确保依赖版本的可复现性。通过 Pipenv,你可以在 Pipfile 中指定依赖项。该工具可生成一个 Pipfile.lock 文件,使你的构建更具确定性,避免产生难以查找的 Bug。
2.PyTorch
PyTorch是Facebook深度学习框架,源于 Torch 框架,同时改善了 Torch 框架,基于ython 语言,由于实现了动态计算图范式, PyTorch 已经成为众多研究人员的首选框架之一,可以计算梯度,而且非常快,可扩展性强。
3. Caffe2
Caffe2 支持分布式含颤训练、部署(即使是在移动平台上),新的 CPU 和支持 CUDA 的硬件。PyTorch 可能更适合做研究,而 Caffe2 更加适合大规模部署,就像在 Facebook 上看到的那样。另外,你可以在 PyTorch 里构谈镇败建并训练模型,同时用 Caffe2 部署。
4. Penlum
Penlum 的优势之一在于,它是 Python 标准 datetime 替代品,因此你可以轻松地将其与现有的代码集成,并且在你需要的时候才使用它的功能。Penlum 的作者特别注意时间分区的处理,默认在每个实例中时间分区是可用的,并且以 UTC 计时。你也可以获得扩展 timedelta 来简化 datetime 的计算。
5. Dash
Dash 是一个可构建 Web 应用,尤其是数据可视化 Web 应用的纯 Python 开源库。它建立在 Flask、Plotly 和 React 之上,并提供这几个框架的函数抽象接口,从而开发者不必学习这些框架,高效开发。这些应用程序可在浏览器和移动设备中使用。
6. PyFlux
PyFlux 是专门针对时间序列开发的 Python 开源库。时间序列研究是统计学和经济学的子领域,其目的是用于描述时间序列的行为,同时也预测时序未来的行为状态。
7. Fire
Fire 是一个开源库,可以为任何 Python 项目自动生成一个命令行界面。你几乎不需要编写任何代码或者文档,你只需要调用一个 Fire 方法并把它传递给你想要的命令行界面:一个函数、一个对象、一个类、一个库,甚至不传递任何参数。
8. imbalanced-learn
imbalanced-learn 是一个 Python 库,它提供了相关的技术来解决数据不平衡的问题。另外,它和 scikit-learn 兼容,并且是 scikit-learn-contrib 项目的一部分,非常有用。
9. FlashText
FlashText 证明旅野了算法和数据结构设计的重要性,即使对于简单的问题,更好的算法也能够轻松超越在快 CPU 上运行的朴素实现。
10. Luminoth
Luminoth 是一个用 TensorFlow 和 Sonnet 构建的开源的计算机视觉 Python 工具包。它可直接支持物体检测,背后支持的模型是 Faster R-CNN。

6. 请问怎么用Python画栅格地图,类似下面这样的图,激光会返回障碍物的位置信息

你用的是激光雷达吧。 雷达应该本身可以形成周围物体的反馈。

所以需要一个图像识别算法识别出障碍物是什么。然后标志出来。

这个没有做过。不过都是现成的算法。 找一找就可以找到。

如果没有找到可以按下面的思路去做:
雷达应该可以返回目标物的距离,以及反射强度。可以使用PIL,制作一个IMAGE。根据距离角度计算出点的位置,根据反射强度计算出它的灰度值。0-255的范围。
下面是计算障碍物。 通常可以简化算法。 比如连续灰度值过10且超过2-3个像素则为目标障碍物。还可以加上距离判断。比如距离15厘米以内的才算是障碍物。
另外灰度值与范围可以做一个判断矩阵。低灰度值。
有了障碍物,只需要计算图像中心点。然后在周围画个矩形。

最后把IMAGE画出来。可以用PIL,也可以用opencv的函数。

7. python,人工智能,水果识别

1.水果数据处理:对滚洞水果(苹果,大扮枯香蕉)数据集进行处理转化为标签和图像,并转化为one-hot码。

2.卷积缺逗模型搭建:采用keras搭建模型,卷积层、池化层、Dropout层、全连接层、输出层

3.模型训练把数据集在建立的模型上进行训练,并把最好的模型保存到h5文件中,便于直接对模型进行测试。

4.模型测试:打开摄像头,使用通用物体进行测试。测试结果将录制成视频展示。

8. OpenCV-Python之——图像SIFT特征提取

在一定的范围内,无论物体是大还是小,人眼都可以分辨出来。然而计算机要有相同的能力却不是那么的容易,在未知的场景中,计算机视觉并不能提供物体的尺度大小,其中的一种方法是把物体不同尺度下的图像都提供给机器,让机器能够对物体在不同的尺度下有一个统一的认知。在建立统一认知的过程中,要考虑的就是在图像在不同的尺度下都存在的特征点。

在早期图像的多尺度通常使用图像金字塔表示形式。图像金字塔是同一图像在不同的分辨率下得到的一组结果其生成过程一般包括两个步骤:

多分辨率的图像金字塔虽然生成简单,但其本质是降采样,图像的局部特征则难以保持,也就是无法保持特征的尺度不变性。

我们还可以通过图像的模糊程度来模拟人在距离物体由远到近时物体在视网膜上成像过程,距离物体越近其尺寸越大图像也越模糊,这就是高斯尺度空间,使用不同的参数模糊图像(分辨率不变),是尺度空间的另一种表现形式。

构建尺度空间的目的是为了检测出在不同的尺度下都存在的特征点,而检测特征点较好的算子是Δ^2G(高斯拉普拉斯,LoG)
使用LoG虽然能较好的检测到图像中的特征点,但是其运算量过大,通常可使用DoG(差分高斯,Difference of Gaussina)来近似计算LoG。

从上式可以知道,将相邻的两个高斯空间的图像相减就得到了DoG的响应图像。为了得到DoG图像,先要构建高斯尺度空间,而高斯的尺度空间可以在图像金字塔降采样的基础上加上高斯滤波得到,也就是对图像金字塔的每层图像使用不同的参数σ进行高斯模糊,使每层金字塔有多张高斯模糊过的图像。
如下图,octave间是降采样关系,且octave(i+1)的第一张(从下往上数)图像是由octave(i)中德倒数第三张图像降采样得到。octave内的图像大小一样,只是高斯模糊使用的尺度参数不同。

对于一幅图像,建立其在不同尺度scale下的图像,也称为octave,这是为了scale-invariant,也就是在任何尺度都能有对应的特征点。下图中右侧的DoG就是我们构建的尺度空间。

为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点。下图中将叉号点要比较的26个点都标为了绿色。

找到所有特征点后, 要去除低对比度和不稳定的边缘效应的点 ,留下具有代表性的关键点(比如,正方形旋转后变为菱形,如果用边缘做识别,4条边就完全不一样,就会错误;如果用角点识别,则稳定一些)。去除这些点的好处是增强匹配的抗噪能力和稳定性。最后,对离散的点做曲线拟合,得到精确的关键点的位置和尺度信息。

近来不断有人改进,其中最着名的有 SURF(计算量小,运算速度快,提取的特征点几乎与SIFT相同)和 CSIFT(彩色尺度特征不变变换,顾名思义,可以解决基于彩色图像的SIFT问题)。

其中sift.detectAndCompute()函数返回kp,des。

上图dog的shape为(481, 500, 3),提取的特征向量des的shape为(501, 128),501个128维的特征点。

该方法可以在特征点处绘制一个小圆圈。

https://blog.csdn.net/happyer88/article/details/45817305
https://www.jianshu.com/p/d94e558ebe26
https://www.cnblogs.com/wangguchangqing/p/4853263.html

9. yanshee物体识别

1:打开yanshee开发者平台查看YanAPI文档 中物体识别函数sync_do_object_recognition

2:打开浏览器通过机器人IP地址打开jupyterlab

3:开始调用,识别到结果为Apple需要我们自己根据识别到的结果进行中文播报

4:播报

播报需要吧返回的json字符串困扒进行卖猛解析,这里需要用到python的基础语法,不会同学请百汪配昌度。

阅读全文

与python物体识别相关的资料

热点内容
墨痕斋是什么游戏的服务器 浏览:940
word文件如何压缩大小 浏览:277
遵义联通服务器地址是什么 浏览:29
ansys约束命令流 浏览:814
解压软件电脑版如何下载 浏览:791
闪电匕首算法球 浏览:692
linuxredis停止命令 浏览:670
大麦账号怎么加密 浏览:113
穿越火线怎么找服务器 浏览:526
秘密加密社交软件app 浏览:256
c语言编译器怎么找文件 浏览:835
数学不好能编程吗 浏览:254
微云里的视频加密 浏览:41
3大加密货币交易平台 浏览:647
钣金激光切割机编程 浏览:496
vivo手机手电筒app在哪里 浏览:787
单片机晶振电路电容 浏览:887
穿越火线河南一区服务器云主机 浏览:41
文件夹与快捷方式显示一致 浏览:879
幻影服务器怎么看金钱 浏览:349