⑴ 精雕软件五轴编程是怎么的
设备硬件方面,精雕机和加工中心不太一样,精雕机没有原厂产的五轴机,精雕机的五轴是改装的。至于“五轴联动”要看改装后控制系统能不能完美的支持“五轴联动”。
“五轴编程”和“五轴联动编程”又不太一样。“五轴联动编程”是要求五个运动轴同时协调动作,这种编程技巧要求很高,一般用UG和“卡地亚”这两种目前最高端的三维软件来进行编程,而且“五轴联动”对设备硬件要求也很高,一般多用于“五轴联动加工中心"上。
”五轴编程“其实很简单,它并不要求五个轴同时动作,需要的只是让工件翻面加工(而工件翻面就需要旋转,旋转就需要五轴机),通常多用于“五面体加工设备“上,估计你的精雕机就是属于”五面体加工设备“。'五轴编程”你完全可以用”固定旋转轴“的方式编程。即,将工件旋转到合适的角度,然后两个旋转轴固定下来不动,此时再采用三轴机的编程,将能加工的部分加工出来。随后,两个旋转轴再旋转到合适角度固定下来不动,再用三轴编程加工出能加工的部分,就这样,旋转、加工、再旋转、再加工......就可以一点一点的将工件的多个面加工出来。这种”五轴编程“的方式是最简单的编程方式,只要会三轴机的编程就能进行五轴机的编程,同时这种编程方式不像”五轴联动编程“对编程软件的要求非常高,只要是三轴机的编程软件,不管是国产的还是进口、不管是高端的还是低端的,都可以进行编程。它的实质其实就是“旋转轴控制+三轴编程”。
⑵ 五轴联动数控加工中心
随着国内数控技术的日渐成熟,近年来五轴联动数控加工中心在各领域得到了越来越广泛的应用。在实际应用中,每当人们碰见异形复杂零件高效、高质量加工难题时,五轴联动技术无疑是解决这类问题的重要手段。近几年随着我国航空航天、军事工业、汽车零部件和模具制造行业的蓬勃发展,越来越多的厂家倾向于寻找五轴设备来满足高效率、高质量的加工。但是,你真的足够了解五轴加工吗?下面就请跟着小编的脚步走进五轴加工的世界。
2016-12-12_225949.png
五轴加工
想要真正的了解五轴加工,首先我们要做的是要读懂什么是五轴机床。五轴机床(5 Axis Machining),顾名思义,是指在X、Y、Z,三根常见的直线轴上加上两根旋转轴。A、B、C三轴中的两个旋转轴具有不同的运动方式,以满足各类产品的技术需求。而在5轴加工中心的机械设计上,机床制造商始终坚持不懈地致力于开发出新的运动模式,以满足各种要求。综合目前市场上各类五轴机床,虽然其机械结构形式多种多样,但是主要有以下几种形式:
2016-12-12_230325.png
两个转动坐标直接控制刀具轴线的方向(双摆头形式)
2016-12-12_230334.png
两个坐标轴在刀具顶端,但是旋转轴不与直线轴垂直(俯垂型摆头式)
2016-12-12_230402.png
两个转动坐标直接控制空间的旋转(双转台形式)
2016-12-12_230413.png
两个坐标轴在工作台上,但是旋转轴不与直线轴垂直(俯垂型工作台式)
2016-12-12_230431.png
两个转动坐标一个作用在刀具上,一个作用在工件上(一摆一转形式)
*术语塌搜:如果旋转轴不与直线轴相垂直,则被认为是一根“俯垂型”轴。
看过这些结构的五轴机床,我相信我们应该明白了五轴机床什么在运动,怎样运动。可是,这么多样化的机床结构,在加工时究竟能展现出哪些特点呢?与传统的三轴机床相比,又有哪些优势呢?接下来就让我们来看看五轴机床有哪些发光点。
2016-12-12_231107.png
5轴机床的特点
说起五轴机床的特点,就要和传统的三轴设备来比较。生产中三轴加工设备比较常见,有立式、卧式及龙门等几种形式。常见的加工方法有立铣刀端刃加工、侧刃加工。球头刀的仿形加工等等。但无论哪种形式和方法都有着一个共同的特点,就是在加工过程中刀轴方向始终保持不变,机床只能通过X、Y、Z三个线性轴的插补来实现刀具在空间直角坐标系中的运动。所以,在面对下面这些产品时,三轴机床效率低、加工表面质量差甚至无法加工的弊端就暴露出来了。
>>>>
而与三轴数控加工设备相比,五联动数控机床有以下优点:
1. 保持刀具最佳切削状态,改善切削条件
2016-12-12_231211.png
如上图岁庆,在左图中三轴切削方式,当切削刀具向顶端或工件边缘移动时,切削状态逐渐变差。而要在此处也保持最佳切削状态,就需要旋转工作台。而如果我们要团雀历完整加工一个不规则平面,就必须将工作台以不同方向旋转多次。可以看见,五轴机床还可以避免球头铣刀中心点线速度为0的情况,获得更好的表面质量。
2. 有效避免刀具干涉
2016-12-12_231238.png
如上图,针对航空航天领域内应用的叶轮、叶片和整体叶盘等零件,三轴设备由于干涉原因无法满足工艺要求。而五轴机床就可以满足。同时五轴机床还可以使用更短的刀具进行加工,提升系统刚性,减少刀具的数量,避免了专用刀具的产生。对于我们的企业老板来说,意味在刀具成本方面,五轴机床将会给您省钱了!
3. 减少装夹次数,一次装夹完成五面加工
2016-12-12_231302.png
如上图可以看出五轴加工中心还可以减少基准转换,提高加工精度。在实际加工中,只需一次装夹,加工精度更容易得到保证。同时五轴加工中心由于过程链的缩短和设备数量的减少,工装夹具数量、车间占地面积和设备维护费用也随之减少。这意味着您可以用更少的夹具,更少的厂房面积和维护费用,来完成更高效更高质量的加工!
4. 提高加工质量和效率
2016-12-12_231317.png
如图,五轴机床可以采用刀具侧刃切削,加工效率更高。
5. 缩短生产过程链,简化生产管理
五轴数控机床的完整加工大大缩短了生产过程链,可以使生产管理和计划调度简化。工件越复杂,它相对传统工序分散的生产方法的优势就越明显。
6. 缩短新产品研发周期
对于航空航天、汽车等领域的企业,有的新产品零件及成型模具形状很复杂,精度要求也很高,因此具备高柔性、高精度、高集成性和完整加工能力的五轴数控加工中心可以很好地解决新产品研发过程中复杂零件加工的精度和周期问题,大大缩短研发周期和提高新产品的成功率。
等等…
综上所述,五轴机床实在是有太多太多优点,但是五轴机床刀具姿态控制,数控系统,CAM编程和后处理都要比三轴机床复杂的多!同时,我们说到五轴机床,就不得不说真假五轴的问题,我们都知道真假五轴最大的区别在于RTCP功能,然而何谓RTCP,它是怎么产生的又该如何应用?下面我们就结合机床结构和编程后处理来具体了解一下RTCP,了解他的真正面目。
RTCP,在数控GNC61高档五轴数控系统里,认为RTCP即是Rotated Tool Center Point,也就是我们常说的刀尖点跟随功能。在五轴加工中,追求刀尖点轨迹及刀具与工件间的姿态时,由于回转运动,产生刀尖点的附加运动。数控系统控制点往往与刀尖点不重合,因此数控系统要自动修正控制点,以保证刀尖点按指令既定轨迹运动。业内也有将此技术称为TCPM、TCPC或者RPCP等功能。其实这些称呼的功能定义都与RTCP类似,严格意义上来说,RTCP功能是用在双摆头结构上,是应用摆头旋转中心点来进行补偿。而类似于RPCP功能主要是应用在双转台形式的机床上,补偿的是由于工件旋转所造成的的直线轴坐标的变化。其实这些功能殊途同归,都是为了保持刀具中心点和刀具与工件表面的实际接触点不变。所以为了表述方便,本文统一此类技术为RTCP技术。
那么RTCP功能是怎么产生的呢?多年以前,在五轴机床刚普及市场的时候,RTCP概念被机床厂家大肆宣传。彼时RTCP功能更像是为技术而技术的噱头,更多人是对其技术本身的热衷和炒作。其实RTCP功能正好相反,它不光是一项好技术,更是一项能为客户带来效益和创造价值的好技术。拥有RTCP技术的机床(也就是国内所说的真五轴机床),操作工不必把工件精确的和转台轴心线对齐,随便装夹,机床自动补偿偏移,大大减少辅助时间,同时提高加工精度。同时后处理制作简单,只要输出刀尖点坐标和矢量就行了。像我们之前说的那样,在机械结构上,五轴数控机床主要有双摆头、双转台、一摆一转等结构。下文我们将以双转台五轴机床,数控GNC61高档五轴数控系统为例,详细介绍一下RTCP功能。
2016-12-12_231537.png
在五轴机床中定义第四轴和第五轴的概念:在双回转工作台结构中第四轴的转动影响到第五轴的姿态,第五轴的转动无法影响第四轴的姿态。第五轴为在第四轴上的回转坐标。
2016-12-12_231557.png
好了,看完定义说明我们来解释一下。如上图所示,机床第4轴为A轴,第5轴为C轴。工件摆放在C轴转台上。当第4轴A轴旋转时,因为C轴安装在A轴上,所以C轴姿态也会受到影响。同理,对于我们放在转台上面的工件,如果我们对刀具中心切削编程的话,转动坐标的变化势必会导致直线轴X、Y、Z坐标的变化,产生一个相对的位移。而为了消除这一段位移,势必机床要对其进行补偿,RTCP就是为了消除这个补偿而产生的功能。
那么机床如何对这段偏移进行补偿呢?接下来我们就来分析一下这段偏移是怎么产生的。
根据前文,我们都知道是由于旋转坐标的变化导致了直线轴坐标的偏移。那么分析旋转轴的旋转中心就显得尤为重要。对于双转台结构机床,C轴也就是第5轴的控制点通常在机床工作台面的回转中心。而第4轴通常选择第四轴轴线的中点作为控制点。
2016-12-12_231609.png
2016-12-12_231616.png
数控系统为了实现五轴控制,需要知道第5轴控制点与第四轴控制点之间的关系。即初始状态(机床A、C轴0位置),第四轴控制点为原点的第四轴旋转坐标系下,第五轴控制点的位置向量[U,V,W]。同时还需要知道A、C轴轴线之间的距离。对于双转台机床,举例如下图所示。
2016-12-12_231630.png
讲到这里,大家可以看出,对于有RTCP功能的机床,控制系统为保持刀具中心始终在被编程的位置上。在这种情况下,编程是独立的,是与机床运动无关的编程。当您在机床上使用编程时,不用担心机床运动和刀具长度,您所需要考虑的只是刀具和工件之间的相对运动。余下的工作控制系统将为您完成。举个例子:
2016-12-12_231657.png
如上图,不带G203 RTCP功能关的情况下,控制系统不考虑刀具长度。刀具围绕轴的中心旋转。刀尖将移出其所在位置,并不再固定。
2016-12-12_231708.png
如上图,带G203 RTCP功能开的情况下,控制系统只改变刀具方向,刀尖位置仍保持不变。X,Y,Z轴上必要的补偿运动已被自动计算进去。
G203是数控系统里RTCP开启指令,通常已经在CAM系统的CNC程序中被调用。而CNC程序中仅包含了所要趋近的X/Y/Z点,和描述刀具方向的方向矢量A,B,C。换句话说,CNC程序仅包含几何和刀具方向数据。
而对于不具备RTCP的五轴机床和数控系统是怎么解决直线轴坐标偏移这个问题呢?我们知道现在国内很多五轴数控机床和系统都属于假五轴,所谓假五轴,其实就是指不带RTCP功能的机床。真假五轴,既不是看长相也不是看五个轴是否联动,要知道假五轴也可以做五轴联动。假五轴的区别主要在于其没有真五轴RTCP算法,也就是说假五轴编程需要考虑主轴的摆长及旋转工作台的位置。这就意味着用假五轴数控系统和机床编程时,必须依靠CAM编程和后处理技术,事先规划好刀路。同样一个零件,机床换了或者刀具换了,都必须重新进行CAM编程和后处理。并且假五轴机床在装夹工件时需要保证工件在其工作台回转中心位置,对操作者来说,这意味着需要大量的装夹找正时间,且精度得不到保证。即使是做分度加工,假五轴也麻烦很多。而真五轴只需要设置一个坐标系,只需要一次对刀,就可以完成加工。下图以NX后处理编辑器设置为例,说明假五轴的坐标变换。
2016-12-12_232154.png
如上图,假五轴是依靠后处理技术,将机床第四轴和第五轴中心位置关系表明,来补偿旋转轴对直线轴坐标的位移。其生成的CNC程序X、Y、Z不仅仅是编程趋近点,更是包含了X、Y、Z轴上必要的补偿。这样处理的结果不仅会导致加工精度不足,效率低下,所生成的程序不具有通用性,所需人力成本也很高。同时由于每台机床的回转参数不同,都要有对应的后处理文件,对于生产也会造成极大的不便。再者假五轴其生成程序无法改动,实现手工五轴编程基本没有可能。同时因为没有RTCP功能,其衍生的众多五轴高级功能都无法使用,比如五轴刀补功能等。其实对于五轴机床来说,它只是我们为了实现加工结果的工具,并无真假之分。重要的是我们的工艺决定了选用什么方式加工,相对而言,真五轴机床性价比更高。而对于数控GNC61数控系统,不但具有RTCP功能,同时还支持3D刀补、C样条插补、NURBS样条插补、大圆弧插补、圆锥插补等诸多高端插补功能,从而实现了更高效简洁、高质量的加工。
2016-12-12_232204.png
五轴机床加工S型试件
2016-12-12_232213.png
机床加工钛合金叶轮
⑶ 加工中心手工编程内洗圆弧怎么编程,举例说明,谢谢
1、原理和圆规画圆差不多,把圆规张开(圆半径),针插在圆心,笔头从起点转到终点。
2、纤岩机床画圆是先移动到起点(笔头的起点)G1x..y..
3、然后给出铣圆的R值,也就圆心到起点的距离,程序是G2(或G3)i..(或是J..圆规张开距离)X..Y..(笔头结束的位置)。
4、i和J是对应铣圆的方向,i对应X方向,J对应Y方向。
5、例:以X轴往负方向铣个直径10的半圆:
(1)G1X0Y0:
(2)G3i-5.X-10.Y0:
(3)五轴加工中心编程实例扩展阅读
具体步骤
数控手工编程的主要内容包括分析零件图样、确定加工过程、数学处理、编写程序清单、程序检查、输入程序和工件试切。
1、分析零件图样和工艺处理
首先根据图纸对零件的几何形状尺寸、技术要求进行分析,明确加工内容,决定加工方案、加工顺序,设计夹具,选择刀具、确定合理的走刀路线和切削用量等。同时还应充分发挥数控系统的性能,正确选择对刀点及进刀方式,尽量减少加工辅助时间。
2、数学处理
(1)编程前根据零件的几何特征,建立一个工件坐标系,根据图纸要求制定加工路线,在工件坐标系上计算出刀具的运动轨迹。对于形状比较简单的零件(如直线和圆弧组成的零件),只需计算出几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值。
(2)对于形状复杂的零件(如非圆曲线、曲面组成的零件),数控系统的插补功能不能满足零件的几何形状时,必须计算出曲面或曲线上一定数量的离散点,点与点之间用直线或圆弧逼近,根据判凳要求的精度计算出节点间的距离。
3、编写零件程序单
加工路线和工艺参数确定以后,根据数控系统规定的指令代码及程序段格式,逐段编写零件程序。
4、程序输入
以前的数控机床的程序输入一般使用穿孔纸带,穿孔纸带上的程序代码通过纸带阅读装置送入数控系统。现代数控机床主要利用键盘将程序输入计算机中;通信控制的数控机床,程序可以由计算机接口传送。
5、程序校验与首件试切
(1)程序清单必须经过校验和试切才能正式使用。校验的方法是将程序内容输入到数控装置中,机床空刀运转,若是平面工件,可以用笔代刀,以坐标纸代替工件,画出加工路线,以检查机床的运动轨迹是否正确。若毁冲御数控机床有图形显示功能,可以采用模拟刀具切削过程的方法进行检验。
(2)但这些过程只能检验出运动是否正确,不能检查被加工零件的精度,因此必须进行零件的首件试切。首次试切时,应该以单程序段的运行方式进行加工,监视加工状况,调整切削参数和状态。
⑷ 加工中心用G52怎么编程序例如
通过G52可在工件坐标系上独立设定局部坐标系,以确保指令位置为程序原点,
G54(G54 ~ G59) G52 X__ Y__ Z__ α __
α 附加轴
(1) 在指定新的G52 指令前,G52 指令一直有效,且不移动。G52 指令可以不改变工件坐标系(G54 ~ G59) 的
原点位置而任意再设定加工的坐标系。
(2) 在通电后的参考点( 原点) 返回及挡块式手动参考点( 原点) 返回中,局部坐标系偏置被清除。
(3) 通过(G54 ~ G59)G52 X0 Y0 Z0 α 0; 取消局部坐标系。
(4) 绝对值(G90) 中的坐标指令向局部坐标系位置移动。
( 注) 重复执行程序,会造成工件坐标系发生偏移的情况,所以在程序结束时,请指令参考点返回动作。
. . . M29 S100; G84 X0 Y0 Z-20. R5. Q5. F150; . . . 注:M29为钢性攻牙,F=S*P 手工编程可是我强项中的强项,你想学宏程序来加工曲面的话我也可以教你!
铸铁可以200-300。熟铁没试过,估计超一百做不了
是的L是循环次数K也是可以用G33G84G74编循环次数必要的时候才用比如深孔螺纹
g52是偏置用的
你可以同时编进程序中,机床操作时单步进行,仔细小心点,看有无报警信息就可以实验出来,我就是这么干的
多大的槽,6mm的?先钻个孔再加工
是CAM软件。
现在编程的软件较多吧。加工中心现在常用的有UG,CATIA.
UG价格比CATIA便宜,但CATIA功能相对稍强些。UG进入国内时间较早,一般的稍小的企业常用UG。现大的企业如汽车模具加工企业用CATIA越来越多了。
看你自己的定位,反正学好一个,再学另一个也很快的。
如果你只是单纯的操作加工中心,只要学标准的常用G、M加工指令以及对实际机台进行学习操作就可以了。因为操作只需要手动编一些简单的程序。其枣陆棚余一般都用电脑编程。
圆弧插补指令
1,G02顺时针圆弧插补:沿着刀具进给路径,圆弧段为顺时针。
2.,G03逆时针圆弧插补:沿着刀具进给路径,圆弧段位逆时针。
圆弧半径编程
1,格式:G02/G03X_Y_Z_R_F;
2, 移到圆弧初始点;
3,G02/G03+圆弧终点坐标+R圆弧半径。(圆弧<或=半圆用+R;大于半圆(180度)小于整圆(360度)用-R。圆弧半径R编程不能用于整圆加工。)
用I、J、K编程(整圆加工)
1,格式:G02G03X_Y_Z_I_J_K_F_;
2, I、J、K分别表示XY方向相对于凳则圆心之间的距离,X方向用I表示,Y方向用J表示,z方向用K表示(G17平面K为0)。正负判断方法:刀具停留在轴的负方向,往正方向进给,也就是与坐标轴同向,那么就取正值,悉磨反之为负。
技巧
在加工整圆时,一般把刀具定位到中心点,下刀后移动到x轴或Y轴的轴线上,这样就有一根轴是0,便于编程。
⑸ 加工中心编程中的阵列方法实例比如一个料上打100个孔长宽间距5毫米怎么用阵列方法编程求大神实例编程谢谢
FANUC系统钻圆周孔方法很多,常燃备用的有极坐标指令G16,坐标旋转指令G68,以G16为实例;均匀分部4个圆周孔,起始角度45度,直径是100,圆心为坐标原点G90G54G0X0Y0Z100G16X50圆周孔半径Y45起始角M3S1000G98G81Z-5R3F250G91Y90K3增量方皮物毁式钻剩余3孔,蚂氏角度间隔90,也可用绝对指令G90G15G80M5M30
⑹ 谁能帮我解释下5轴,4轴加工中心编程时的注意事项,要领,和三轴比区别在哪儿
5轴、4轴编程。如果是旋转轴固定的话,可以直接当成3轴机来编程。如果是联动的话,那么5个轴同时协调运动,这是一个非常复杂的计算过程了,只能依靠软件编程了,而且5联动编程不是那么简单的,主要是刀轴方向的确定。3轴联动编程的话,刀轴方向始终是朝向XY平面的矢量方向;4轴联动编程,刀轴始终是朝向工件旋转轴心线的;而5联动编程,刀轴方向就不是固定的了,随时都在变化中,而且是空间的任意方向变化,只能依靠软件来编程了(例如,加工螺旋桨叶片,为了得到较高的表面质量,那么就要求,刀具和叶片表面夹角始终保持一致,那么刀轴的方向就随着叶片表面曲线始终在变化)。5联动编程的关键点就是在刀轴的方向上,而且软件编程时还需要手工进行刀轴的插补,非常的耗时耗力。
编程和后处理无关。后处理,那个不用担心,每台机床出厂时,厂家“后处理程序”都是设置好了的,只要你用软件编出走刀路径,然后就能通过后处理程序生成机床所用的程序。所谓的“后处理程序”,其实就是一个“转换工具”,将不同软件编制的程序处理成机床能够认识的程序,就是起这么一个作用的。
⑺ 用数控铣床编一个45度的斜线怎么编程啊
在改变平面后再运用G68坐标系旋转,这种方式对于熟练运用改面平面跟坐标系旋转的朋友来说是最简单的,因为这种方式不需要会宏,也不需要运用三角函数计算。
设斜面宽20的中心为Y0;X、Z坐标如你画的图;加工的刀具为10(半径5);不考虑余量。
G0 X10Y-20M3S1000;
Z50M8;
#1=0;(x方向初始值)
N10#2=- #1+5(+5是让出刀具半径);
#3=#1*TAN30;(计算Z值)
G1X#2Z#3F300;
Y20;
G0Z50;
Y-20;
#1=#1+1;(X方向增加1MM,如果想加工细一点可以增加0.5、0.2··)
IF[#1LE40]GOTO10;
G0Z100M9;
M30
(7)五轴加工中心编程实例扩展阅读:
五轴加工中,不论是刀具旋转还是转台转动,都使刀尖点产生了XYZ的附加运动。五轴数控系统可以自动对这些转动和摆动产生的工件与刀尖点间产生的位移进行补偿,称之为RTCP(围绕刀尖点旋转)控制功能。
例如,大连光洋的GNC61采用G203起动该功能;在西门子840D中,使用TRAORI开启RTCP;海德汉TNC530中,使用M128开启RTCP。这样用户可以在五轴机床上,如同3坐标一样的编程,可以适时加入调。
⑻ 求加工中心编程实例
1、根据图纸要求,确定工艺方案及加工路线
(1)以底面为定位基准,两侧用压板压紧,固定于铣床工作台上
(2)工步顺序
钻孔φ20㎜、按O’ABCDEFG线路铣削轮廓。
2、选用经济型数控铣床,华中Ⅰ型(XZK7532型)数控铣钻床。
3、选择刀具
现采用φ20㎜的钻头,钻削φ20㎜孔;φ4㎜的平底立铣刀用于轮廓的铣削,并把该刀具的直径输入刀具参数表中。由于华中Ⅰ型数控铣钻床没有自动换刀功能,钻孔完成后,直接手工换刀。
4、确定切削用量
切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。
5、确定工件坐标系和对刀点
在XOY平面内确定以0点为工件原点,Z方向以工件表面为工件原点,建立工件坐标系,如上图所示。采用手动对刀方法把0点作为对刀点。
1、加工φ20㎜孔程序(手工安装好φ20㎜钻头)%7528
G54G91M03;相对坐标编程
G00X40Y30;在XOY平面内加工
G98G81X40Y30Z-5R15F120;钻孔循环
G00X5Y5Z50
M05
M02
2、铣轮廓程序(手工安装好ф4㎜立铣刀)%7529
G54G90G41G00X-20Y-10Z-5D01
G01X5Y-10F150
G01Y35
G91G01X10Y10
G01X11.8Y0
G02X30.5Y-5R20
G03X17.3Y-10R20
G01X10.4Y0
G01X0Y-25
G01X-100Y0
G90G40G00X0Y0Z100
M05 M02
(8)五轴加工中心编程实例扩展阅读:
十字槽粗加工程序
O0001;
G90 G40 G21 G17 G94;
G91 G28 Z0;
G90 G54 M3 S480;
G00 X30.0 Y0;
Z5.0 M08;
G01 Z-4.0 F40;
X-30.0 F60;
Z-8.0 F40;
X30.0 F60;
G00 Z5.0;
X0 Y25.0;
G01 Z-4.0 F40;
Y-25.0;
Z-8.0 F40;
Y25.0 F60;
G00 Z5.0 M09;
G91 G28 Z0;
M30
⑼ 五轴加工中心怎么编程,和三轴的一样吗
1、编程难度增加。三轴加工中心在加工时,刀轴方向是不会改变的,运动方式也有限,编程相对简单。五轴加工,由于刀具和工件的相互位置在加工过程中随时调整,刀轴方向不断改变,要注意干涉。
2、现在一般都用专门的编程软件进行辅助编程,我这里以UG为例。相对三轴,五轴加工编程很重要的两点:驱动方法和刀轴,这两项的设定很重要。另外,为完整切削要加工的面,避免过切或切削不完整,“指定部件”和“指定检查”也很重要。
3、后处理,五轴比三轴复杂,要考虑的参数更多。