❶ 为什么有人说python的多线程是鸡肋
Python多线程是不是鸡肋,是,GIL那个东西再那里摆着,就算在多核下面Python也是无法并行的,这个好理解嘛,就相当于做了个册哪分时复用。
Python多线程有没有用,有,你去爬图片站的州喊码时候,用单进程单线程这种方式,进程很容易阻塞在获取数据socket函数上,多线程可以缓解这种情况。你说解决没有,要是每个请求都阻塞起了,那多线程也没什么用(当然,这种情况没见过哈)。
Python的渗纤优势就在于写起来快,用起来方便。你要做计算密集型的,还想并行化的话,还是用C吧
❷ python多线程执行同一个函数性能比循环快嘛
因为python的如或全局解释器锁的机制,
导致python的多线程并不是明橡禅真正的多线程,
效率上不仅不会比单线程快,反而可能更慢,
所以说是鸡肋,要求速度好话,可以用多进程来激尘实现
网络搜索圈T社区(www.aiquanti.com) 免费视频教程
❸ python多线程加了join函数为什么会变慢
因为不加join的话工作还没闭渗做完就直接退出了呀,join是阻塞码配等线程执行轿模脊完毕。
不是快慢的问题,是对和错的问题。
❹ python多线程能提高效率吗
很多爬虫工作者都遇到过抓取速度非常慢,现在的大多数网站都具备了反爬虫技术,对IP的访问频率限制很严格。如果想提升爬虫的速度,大家可以尝试以下方法。
一、尽量减少访问次数。
单次爬虫任务的大多耗时在网络请求等待响应,所以能减少网络请求就尽量减少请求,这样既能减少目标网站的压力,也能减少代理服务器的压力,提高工作效率。
二、精简流程,减少重复。
大部分网站并不是严格意义上的树状结构,而是多重交叉的网状结构,所以从多个入口深入的网页会有很多重复,一般根据URL或者ID进行唯一性判别,爬过的就不需要再爬。一些数据如果可以在一个页面内获取到,也可以在多个页面下获取到,那就选择只在一个页面内获取。
三、多线程任务。
大量爬虫是一个IO阻塞的任务,所以采用多线程的并发方式可以有效地提高整体速度。多线程可以更好地提高资源利用率,程序设计也更加坚定,程序响应也更快。
四、分布式任务。
上面三点都做到极致了,但是单机单位时间内能爬取到的网页数量还不足以达到目标,在指定时间内还不能及时的完成任务,那么就只能多机器来同时进行爬虫任务了,这就是分布式爬虫。
做好以上几点,基本可以将爬虫的效率提升大半,另外爬虫代理ip也是不可缺少的尤其是对于量大的任务,IPIDEA提供全球ip的同时更注重保护数据的安全,也可以减少反爬虫策略的触发,一举多得。
❺ python之多线程
进程的概念:以一个整体的形式暴露给操作系统管理,里面包含各种资源的调用。 对各种资源管理的集合就可以称为进程。
线程的概念:是操作系统能够进行运算调度的最小单位。本质上就是一串指令的集合。
进程和线程的区别:
1、线程共享内存空间,进程有独立的内存空间。
2、线程启动速度快,进程启动速度慢。注意:二者的运行速度是无法比较的。
3、线程是执行的指令集,进程是资源的集合
4、两个子进程之间数据不共享,完全独立。同一个进程下的线程共享同一份数据。
5、创建新的线程很简单,创建新的进程需要对他的父进程进行一次克隆。
6、一个线程可以操作(控制)同一进程里的其他线程,但是进程只能操作子进程
7、同一个进程的线程可以直接交流,两个进程想要通信,必须通过一个中间代理来实现。
8、对于线程的修改,可能会影响到其他线程的行为。但是对于父进程的修改不会影响到子进程。
第一个程序,使用循环来创建线程,但是这个程序中一共有51个线程,我们创建了50个线程,但是还有一个程序本身的线程,是主线程。这51个线程是并行的。注意:这个程序中是主线程启动了子线程。
相比上个程序,这个程序多了一步计算时间,但是我们观察结果会发现,程序显示的执行时间只有0.007秒,这是因为最后一个print函数它存在于主线程,而整个程序主线程和所有子线程是并行的,那么可想而知,在子线程还没有执行完毕的时候print函数就已经执行了,总的来说,这个时间只是执行了一个线程也就是主线程所用的时间。
接下来这个程序,吸取了上面这个程序的缺点,创建了一个列表,把所有的线程实例都存进去,然后使用一个for循环依次对线程实例调用join方法,这样就可以使得主线程等待所创建的所有子线程执行完毕才能往下走。 注意实验结果:和两个线程的结果都是两秒多一点
注意观察实验结果,并没有执行打印task has done,并且程序执行时间极其短。
这是因为在主线程启动子线程前把子线程设置为守护线程。
只要主线程执行完毕,不管子线程是否执行完毕,就结束。但是会等待非守护线程执行完毕
主线程退出,守护线程全部强制退出。皇帝死了,仆人也跟着殉葬
应用的场景 : socket-server
注意:gil只是为了减低程序开发复杂度。但是在2.几的版本上,需要加用户态的锁(gil的缺陷)而在3点几的版本上,加锁不加锁都一样。
下面这个程序是一个典型的生产者消费者模型。
生产者消费者模型是经典的在开发架构中使用的模型
运维中的集群就是生产者消费者模型,生活中很多都是
那么,多线程的使用场景是什么?
python中的多线程实质上是对上下文的不断切换,可以说是假的多线程。而我们知道,io操作不占用cpu,计算占用cpu,那么python的多线程适合io操作密集的任务,比如socket-server,那么cpu密集型的任务,python怎么处理?python可以折中的利用计算机的多核:启动八个进程,每个进程有一个线程。这样就可以利用多进程解决多核问题。
❻ Python 多线程效率不高吗
Python由于有全锁局的存在(同一时间只能有一个线程执行),并不能利用多核优势。所以,如果你的多线程进程是CPU密集型的,那多线程并不能带来效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。