㈠ 有什么比较好的python教程
一,买一本好书。
不一定非要一直遍敲代码边学习,个人经验,当代码逻辑很清晰,经过之前C语言刷题的锻炼之后,看书学习新的编程语言效果也是非常好,状态好的时候,半天就能学100多页。这里推荐可以看看python丶基础教程,笨方法学python。
二,注重实践。
注意和第一条并不冲突,多敲代码才是王道。可以去codeforce上做题,虽然都是英文的,但是可以用python提交,此外还有计丶蒜客,pythontip。后两者更加简单。多多训练,解决问题。
三,注意需求。
你学python,想用它做什么?可以去一些项目网站,例如国内的shiyanlou,去跟着做做一个个真正的项目,还有很多书上有很多实战项目,跟着做下来。然后,很必要的,自己在这个项目上添加上自己的一些想法,将它变成自己的项目,这一点提高非常大
四,注意网络资源。
像网络经验一样,也可以多逛逛知乎,CSDN,博客园,看看大牛们都是怎么学习的,很多方法都会有介绍,自己有选择的学习。
五,记录自己的学习
开通博客,像CSDN,博客园,或者自己搭建的博客都可以,记录下自己的学习心得,不要怕自己的成果会被窃取,你那点知识大牛们是不屑的,一步一个脚印,在你往回看自己一篇篇博客的时候,你会发现自己已经走了很远。
㈡ 小白学python怎么快速入门多久能完成一个项目
电子书集合|数据科学速查表|迁移学习实战 ,免费下载
链接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取码: z9x7
㈢ Python数据分析 | 数据描述性分析
首先导入一些必要的数据处理包和可视化的包,读文档数据并通过前几行查看数据字段。
对于我的数据来说,由于数据量比较大,因此对于缺失值可以直接做删除处理。
得到最终的数据,并提取需要的列作为特征。
对类别数据进行统计:
类别型字段包括location、cpc_class、pa_country、pa_state、pa_city、assignee六个字段,其中:
单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。
对于数值型数据,首先希望了解一下数据取值范围的分布,因此可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。
按照发布的时间先后作为横坐标,数值范围的分布情况如图所示.
还可以根据最终分类的结果查看这些数值数据在不同类别上的分布统计。
箱线图可以更直观的查看异常值的分布情况。
异常值指数据中的离群点,此处定义超出上下四分位数差值的1.5倍的范围为异常值,查看异常值的位置。
参考:
python数据分析之数据分布 - yancheng111 - 博客园
python数据统计分析 -
科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。
在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
衡量两个变量的相关性至少有以下三个方法:
皮尔森相关系数(Pearson correlation coefficient) 是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。
返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。
斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ) ,它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 秩或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。
返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。
kendall :
也可以直接对整体数据进行相关性分析,一般来说,相关系数取值和相关强度的关系是:0.8-1.0 极强 0.6-0.8 强 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 极弱。
㈣ Python:基于Python爬虫技术的抢票程序及其实现
临近放假,相信我们每天都在群聊里或者朋友圈看到一些帮忙抢火车票的信息。看到朋友们抢回家的车票这么辛( bei )苦( can ),结合圈里一些前辈的指点,抱着学习的心态用 Python 做了一个简单的自动化抢票程序,抢到票之后通过绑定的邮箱(比如 QQ )发通知。下面分享主要内容:
然后,开始使劲地码:
1. 定义自动购票的类(初始化属性)
2. 实现登录功能
3. 实现购票功能
4. 邮箱通知付款
还有,网络不好或者 12306 的服务器不稳定的时候,就会卡住,针对这种情况,系统会重复查询:
最后,祝大家都能顺利抢到票.
本文以转载于博客园小帝君的博客
㈤ 如何自学编程python
首先先了解Python语言的四大发展方向。目前Python的主要方向有web后端开发、大数据分析网络爬虫和人工智能,当然如果再细分的话还有自动化测试、运维等方向。
在学习Python的基础语法时,并不需要太多的基础,基本只要熟练使用电脑日常功能并对Python感兴趣就可以了,但如果想要在人工智能领域方向发展的话,线性代数、概率、统计等高等数学知识基本是必需的,原因在于这些知识能够让你的逻辑更加清晰,在编程过程中有更强的思路。
分享一个千锋Python的学习大纲给你
第一阶段 - Python 数据科学
Python 基础语法
入门及环境安装 、基本语法与数据类型、控制语句、错误及异常、错误处理方法、异常处理方法 、常用内置函数 、函数创建与使用、Python 高级特性、高级函数、Python 模块、PythonIO 操作 、日期与时间 、类与面向对象 、Python 连接数据库
Python 数据清洗
数字化 Python 模块Numpy、数据分析利器Pandas、Pandas 基本操作、Pandas 高级操作
Python 数据可视化
数据可视化基础、MLlib(RDD-Base API)机器学习、MatPlotlib 绘图进阶、高级绘图工具
第二阶段 - 商业数据可视化
Excel 业务分析
Excel 基础技能、Excel 公式函数、图表可视化、人力 & 财务分析案例、商业数据分析方法、商业数据分析报告
Mysql 数据库
Mysql 基础操作(一)、Mysql 基础操作(二)、Mysql 中级操作、Mysql 高级操作、电商数据处理案例
PowerBI
初级商业智能应用 (PowerQuery)、初级商业智能应用 (PowerPivot)、初级商业智能应用案例、存储过程、PowerBI Desktop 案例、PowerBI Query 案例
统计学基础
微积分、线性代数基础、统计基础
Tableau
Tableau 基本操作、Tableau 绘图、Tableau 数据分析、Tableau 流量分析
SPSS
客户画像、客户价值模型、神经网络、决策树、时间序列
第三阶段 - Python 机器学习
Python 统计分析
数据准备、一元线性回归、多元线性回归、一般 logistic 回归、ogistic 回归与修正
Python 机器学习基础
机器学习入门、KNN 讲义、模型评估方法、模型优化方法、Kmeans、DBSCAN、决策树算法实战
Python 机器学习中级
线性回归、模型优化方法、逻辑回归、朴素贝叶斯、关联规则、协同过滤、推荐系统案例
Python 机器学习高级
集成算法 - 随机森林、集成算法 -AdaBoost、数据处理和特征工程、SVM、神经网络、XGBoost
第四阶段 - 项目实战
电商市场数据挖掘项目实战
项目背景 & 业务逻辑 、指定分析策略 、方法实现与结果 、营销活动设计及结果评价 、撰写数据分析报告
金融风险信用评估项目实战
项目背景 & 业务逻辑 、建模准备 、数据清洗 、模型训练 、模型评估 、模型部署与更新
第五阶段 - 数据采集
爬虫类库解析 、数据解析 、动态网页提取 、验证码、IP 池 、多线程爬虫 、反爬应对措施 、scrapy 框架
第六阶段 - 企业课
团队户外拓展训练 、企业合作项目课程 、管理课程 、沟通表达训练 、职业素养课程
以上就是零基础Python学习路线的所有内容,希望对大家的学习有所帮助。
㈥ 有哪些值得推荐的Python学习网站
1.Python.org
Python官方网站。你可以从这里下载Python、使用、学习Python。官方文档自然是最权威的学习资料,只要你英文水平够,学习起来应该不难。
2.Python教程
Python教程以及以其为代表的一系列中文Python教程。考虑到可能部分人的英文水平会成为阅读Python官方文档的障碍,所以中文教程也是必须的。相对于官方文档,这批教程可能更加适合初学者,也比较能够建立体系。
3.Stack Overflow
英语站点,50%的程序员日常工作就是从Google复制代码,剩下的50%就是从这个网站复制了。
4.Django
以及其他常用的所有框架的文档。不同的学习方向会有不同的框架,比如tensorflow、Flask 、Tornado、Requests、Scrapy等等。
5.CSDN
以CSDN为代表的一众国内博客站,还有51CTO、开源中国、博客园等等。