⑴ 如何用python写一个脚本,来跑java代码上的cucumber集成测试
1.直接执行Python脚本代码
引用 org.python包
1 PythonInterpreter interpreter = new PythonInterpreter();
2 interpreter.exec("days=('mod','Tue','Wed','Thu','Fri','Sat','Sun'); "); ///执行python脚本
睁坦2. 执行python .py文件
1 PythonInterpreter interpreter = new PythonInterpreter();
2 InputStream filepy = new FileInputStream("D:\\demo.py");
3 interpreter.execfile(filepy); ///执行python py文件
4 filepy.close();
3. 使用Runtime.getRuntime()执行脚本文件
这种方式和.net下面调用cmd执行命令的方式类似。如果执行的python脚本有引用第三方包的,建议使用此种方式。使用上面两种方式会报错手模java ImportError: No mole named arcpy。毕早缓
1 Process proc = Runtime.getRuntime().exec("python D:\\demo.py");
2 proc.waitFor();
⑵ 怎样用Python语言编一个小程序
编写 Python 小程序的皮册方法燃握宏主要分为以下几步:
安装 Python:在编写 Python 程序之前,需要在计算机上安装 Python。Python 官网提供了下载安装程序皮辩的链接,可以根据操作系统版本下载安装程序。
编写代码:可以使用任何文本编辑器编写 Python 代码。代码的具体内容根据程序的需求来决定,可以包括各种 Python 原生语法、内置函数、第三方库等等。
运行程序:可以使用 Python 解释器来运行 Python 程序。在终端或命令行界面输入 python 文件名.py 即可执行程序。
下面是一个简单的示例程序:
⑶ 如何使用python 语言来实现测试开发
对于各种驱动接口,Python来编写测试用例的好处是:由于Python不需要编译,你所执行的也就是你所编写的,当发生异常的时候,你无须打开集成开发环境,加载测试工程、并调试,你能够很方便的看到python测试脚本的内容,什么地方出了异常可以立刻发现,例如:
from ctypes import *
rc =c_int(-12345);
dll = windll.LoadLibrary("dmodbc.dll");#加载被测试组件
#=================#
SQLHANDLE_env = pointer(c_long(0));
SQLHANDLE_cnn = pointer(c_long(0));
SQLHANDLE_stmt = pointer(c_long(0));
pdns = c_char_p("FASTDB");
puid = c_char_p("SYSDBA");
ppwd = c_char_p("SYSDBA");
#env handle
rc = dll.SQLAllocHandle(1,None,byref(SQLHANDLE_env));
print "result of henv handle alloc :%d" %rc;
#cnn handle
rc = dll.SQLAllocHandle(2,SQLHANDLE_env,byref(SQLHANDLE_cnn));
print "result of cnn handle alloc :%d" %rc;
#connect!
rc = dll.SQLConnect(SQLHANDLE_cnn,pdns,-3,puid,-3,ppwd,-3)
print "result of connect :%d" %rc;
#stmt handle
rc = dll.SQLAllocHandle(3,SQLHANDLE_cnn,byref(SQLHANDLE_stmt));
print "result of stmt handle alloc:%d" %rc;
#exec
rc = dll.SQLExecDirect(SQLHANDLE_stmt,"insert into t values(1)",-3);
print "result of exec:%d" %rc;
#free========================
rc = dll.SQLFreeHandle(3, SQLHANDLE_stmt);
print rc;
rc = dll.SQLDisconnect(SQLHANDLE_cnn);
print rc;
rc = dll.SQLFreeHandle(2, SQLHANDLE_cnn);
print rc;
rc = dll.SQLFreeHandle(1, SQLHANDLE_env);
print rc;
在上面我们可以看到,Python调用c/c++接口是十分容易的,只需要把动态库加载进来,然后把这个动态库当作一个对象实例来使用就可以了。下面将是一个使用ado.net接口的例子:
import System;
from Dm import *#Dm是DMDBMS提供的ado.Net的DataProvider
#print dir(Dm.DmCommand);
i =0;
cnn = Dm.DmConnection("server = 127.0.0.1; User ID = SYSDBA; PWD = SYSDBA; Database = SYSTEM; port = 12345");
cmd = Dm.DmCommand();
cmd.Connection = cnn;
cmd.CommandText = "insert into t values(1);";
cnn.Open();
i=cmd.ExecuteNonQuery();
print i;
cmd.Dispose();
cnn.Close();
可以看到,.net对象的使用与在VisualStdio上进行开发几乎没有任何区别。
通过使用Python进行测试用例的开发,最大的好处莫过于:学习成本非常低,测试工程师只需要学习Python,对于其他语言稍有了解就可以了。同时只需要少量的测试开发工程师对Python测试框架进行维护。
这样的好处就是便于测试人员将精力专精在一个方向,免于“什么都会一点,但什么都不精”的情况。当然测试人员具备广阔的知识面,会使用各种常见的开发工具与平台是好事情,并且也是必要的,不过在短时间内要求迅速能够胜任大多数任务也是企业在人才培养上的期望目标。
⑷ Python语言的测试开发完整学习路线
这里整理了一份基于Python语言的测试开发完整学习路线,对软件测试感兴趣的朋友可根据这份大纲来学习:
第一阶段:专业基础课程
阶段目标:
1.熟练掌握IT核心技术:编程,数据库,操作系统,版本控制
2.能够熟练运用所学技术搭建各类服务器环境
3.深入理解软件研发过程各种疑难杂症及处理手段
4.掌握Python编程技术谨培大并熟练运用Python进行程序设计
知识点:
1、Web页面元素,布局,CSS样式,盒模型,JavaScript程序设计,函数,基础算法,正则表达式。
2、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,建模工具深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为软件测试和测试开发打下基础。
3、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境部署,Shell编程Linux作为一个主流的服务器操作系统,是每一个测试开发工程师必须掌握的重点技术,并且能够熟练运用。
4、Python编程基础,语法规则,函数,数据类型,PDBC,培养扎实的Python编程基本功,同时对Python核心对象编程有熟练的运用。
5、Python面向对象,异常处理,文件IO,多线程,网络编程,PyQT界面开发,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
第二阶段:专业核心课程
阶段目标:
1.熟练应用所学知识完成一个标准的软件测试项目
2.熟练运用Python完成GUI测试,接口测试和性能测试开发
3.对测试开发技术体系和实现原理有深入的理解
4.灵活运用测试开发技术解决项目中的各种问题
知识点:
1、软件工程,软件质量,系统测试流程,方法,专业术语,测试用例设计,禅道管理工具,测试报告,缺陷管理理解软件工程的各类实际问题,理解系统测试的理论、方法与过程,熟练运用测试用例设计方法高效设计测试用例。
2、测试需求分析,测试方案设计,测试用例设计,测试项目实施,缺陷报告与测试报告,深入理解系统测试各个过程和关键环节,熟练完成系统测试项目。
3、SikuliX框架,框架,SeleniumWebDriver框架,基础框架,Android应用,Monkey测试,Appium移动端测试框架,移动端测试框架综合运用各类应用操作平台,完成各种自动化测试框架的学习和应用,深入理解GUI自动化测试技术及相应框架的测试开发。
4、Python单元测试框架,网络通信协议,HTTP与HTTPS协议,WebService与WebSocket协议,Python的接口测试库,PostMan与SoapUI接口测试工具通过对代码级接口测试和协议级接口测试的测试开发实战,灵活运用Python开发接口测试脚本,熟练运用各类接口测试工具。
5、性能测试原理,指标体系,场景设计,实施过程,JMeter工具应用,BeanShell脚本开发,PythonLocust性能测试框架深入理解性能测试技术体系和方法论,熟练运用JMeter性能测试工具和Locust性能测试框架实施对任意系统的性能测试。
第三阶段:综合实战项目
阶段目标:
1.将软件测试和测试开发技术灵活运用于项目中
2.具备较强的测试开发能力,独立完成测试开发项目
3.综合运用软件测试技术,满足企业中高级人才需求
4.对所学技术有深入的理解并具备独立解决问题的能力
知识点:
1、测试需求分析,同行评审,测试计划,测试方案,测试用例,配置管理,持续集成。通过对大型企业级应用系统的测试项目实战,强化理解系统测试项目的实施过程与技术细节。
2、接口测试设计与实施,回归测试,冒烟测试,安全性测试,框架应用,UI自动化实战将各类自动化测试技术结合项目实战演练,强化对自动化测试技术的运中埋用,同时掌握更多的测试框架。
3、性能测试项目实战,LoadRunner性能测试工具,总结通过综合项目实战,将全套测试技术融入到项目中,强化学习效果和项目经验祥竖。
4、Python原生测试框架开发,包括Monkey,UI,图像识别,云测试平台,HTML测试报告,持续集成,KDT关键字驱动框架开发等原生技术实现通过大量的Python原生代码开发,深入理解自动化测试开发技术的底层实现原理,完全抛弃对工具的依赖,做到真正的测试开发技术。
5、基于测试框架的设计思路和实现手段,自主实现一套测试框架能够独立完成一套自动化测试框架,并能够直接用于实际项目中。
6、持续集成与Jenkins,安全性测试原理与工具,Python爬虫开发与Scrapy框架,提升软件测试其它类技术,增强知识面,提升竞争力,助力职业发展。
补充知识
2、UML统一建模语言、五种图、类图、类图详解、用例图、时序图。
3、Dubbo分布式开发框架,Oracle关系型数据库管理系统,MongoDB非关系型数据库管理系统。
4、大数据开发框架Hadoop/MapRece/Spark。
5、Android与iOS的原生应用开发与WebApp开发。
6、OpenCV图像处理框架、TensorFlow深度学习框架,Lucene全文搜索引擎与中文分词框架Ik-Analyzer,视频处理算法与框架等。
⑸ python集成开发环境哪个好
集成开发环境是用于提供程序开发环境的应用程序,一般包括代码编辑器、编译器、调试器和图形用户界面等工具。集成了代码编写功能、分析功能、编译功能、调试功能等一体化的开发软件服务套。所有具备这一特性的软件或者软件套都可以叫集成开发环境。
10个好用的Python集成开发环境推荐:
1. Pydev+Eclipse–最好的免费python IDE
Pydev的是PythonIDE中使用最普遍的,原因很简单,它是免费的,同时还提供很多强大的功能来支持高效的Python编程。Pydev是一个运行在eclipse上的开源插件,它把python带进了eclipse的王国,如果你本来就是是一个eclipse的用户那么Pydev将给你家里一样的感觉。
Pydev能高居榜首,得益于这些关键功能,包括Django集成、自动代码补全、多语言支持、集成的Python调试、代码分析、代码模板、智能缩进、括号匹配、错误标记、源代码控制集成、代码折叠、UML编辑和查看和单元测试整合等。
2. PyCharm–最好的商业python IDE
PyCharm是专业的python集成开发环境,有两个版本。一个是免费的社区版本,另一个是面向企业开发者的更先进的专业版本。
大部分的功能在免费版本中都是可用的,包括智能代码补全、直观的项目导航、错误检查和修复、遵循PEP8规范的代码质量检查、智能重构,图形化的调试器和运行器。它还能与IPython
notebook进行集成,并支持Anaconda及其他的科学计算包,比如matplotlib和NumPy。
PyCharm专业版本支持更多高级的功能,比如远程开发功能、数据库支持以及对web开发框架的支持等。
3.VIM
VIM是一个很先进的文本编辑器,在python开发者社区中很受欢迎。它是一个开源软件并遵循GPL协议,所以你可以免费的使用它。
虽然VIM是最好的文本编辑器,但是它提供的功能不亚于此,经过正确的配置后它可以成为一个全功能的Python开发环境。此外VIM还是一个轻量级的、模块化、快速响应的工具,非常适合那些很牛的程序员—编程从不用鼠标的人。
4. Wing IDE
Wing IDE是另外一个商业的、面向专业开发人员的python集成开发环境,可以运行在windows、OS X和Linux系统上,支持最新版本的python,包括stackless Python。Wing
IDE分三个版本:免费的基础版,个人版以及更强大的专业版。
调试功能是Wing IDE的一大亮点,包括多线程调试,线程代码调试,自动子进程调试,断点,单步代码调试,代码数据检查等功能,此外还提供了在树莓派上进行远程调试的功能。
5.Spyder Python
Spyder Python是一个开源的python集成开发环境,非常适合用来进行科学计算方面的python开发。是一个轻量级的软件,是用python开发的,遵循MIT协议,可免费使用。
Spyder python的基本功能包括多语言编辑器、交互式控制台、文件查看、variable explorer、文件查找、文件管理等。Spyder IDE也可以运行于windows、Mac或者Linux系统之上。
6.Komodo IDE
Komodo是Activestate公司开发的一个跨平台的集成开发环境,支持多种语言包括python。它是商用产品,但是提供了开源的免费版本叫Komodo Edit,能够安装在Mac、Windows和Linux系统上。
和大多数的专业python IDE一样,Komodo也提供了代码重构,自动补全,调用提示,括号匹配,代码浏览器,代码跳转,图形化调试,多进程调试,多线程调试,断点,代码分析,集成测试单元等功能,并且集成其他的第三方库,比如pyWin32。
7.PTVS-Best Python IDE for Windows
PTVS集成在Visual Studio中,就像Pydev可以集成在eclipse中一样。PTVS将Visual
Studio变成了一个强大的、功能丰富的python集成开发环境,并且它是开源的,完全的免费。PTVS发布于2015年,由社区和微软自己在维护。
8.Eric Python
Eric是一个开源python代码编辑器和集成开发环境,提供很多高效编程需要的功能。它是纯python编写的,基于QtGUI并集成强大的Scintilla编辑器功能。
Eric由Detlev Offenbach创建,遵循GPL协议,免费使用。经过多年的开发完善Eric已经成为一个常用的、功能丰富的集成开发环境。它提供一个可靠的插件管理系统,可以通过插件来扩展功能。
Eric提供所有的基础功能,比如调用提示、代码折叠、代码高亮、类浏览器、代码覆盖及分析等等。
9.Sublime Text3
Sublime Text3是目前为止功能最强大的跨平台的、轻量级的代码编辑器。通过添加插件Sublime Text3可以成一个全功能的python IDE。
10.Emacs-Python Editor cum IDE
Emacs有属于它自己的生态系统,它是一个可扩展的并能高度定制的GNU文本编辑器。它可以配置为一个全功能的免费的python集成开发环境。
Emacs在python开发中很受欢迎,他通过python-mode提供开箱即用的python。Emacs可以通过额外的扩展包来增加更多的高级功能。
⑹ python中sit是什么意思
SIT(System Integration Testing)系统集成测试,也叫做集成测试,是软件测试的一个术语,在其中单独的软件模块被合并和作为一个组测试。它在单元测试以后和在系统测试之前。集成测试在已经被单元测试检验后进行作为它的输入模式,组织它们在更大的宏唤集合,和递送,作为它的输出,集成系统为系统测试做准备。集成测试的目的是校验功能、性能和可靠性要求,配置在主设计项目中。
系统整合测试就是评估产品搏衫在其规格范围内的环境下工作,能否完成产品设计规格所需要的功能及与周边设备、应用软件的兼容性。大致可以分为硬、软件兼容性测试,认证测试。安装Win/Linux/Unix这些只是系统整合测试的一小部分基绝腔硬件测试:所有产品的周边设备,例如CPU、DIMM、storage、NIC、USB等软件测试:操作系统的安装,驱动的安装,以及配套应用软件的安装及使用等认证测试:Windows、Red Hat、VMWare等。
⑺ python什么框架比较好
从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。Django:PythonWeb应用开发框架Django应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。Diesel:基于Greenlet的事件I/O框架Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。Flask:一个用Python编写的轻量级Web应用框架Flask是一个使用Python编写的轻量级Web应用框架。基于WerkzeugWSGI工具箱和Jinja2模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数据库、窗体验证工具。Cubes:轻量级PythonOLAP框架Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregateddata)等工具。Kartograph.py:创造矢量地图的轻量级Python框架Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。Pulsar:Python的事件驱动并发框架Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。Web2py:全栈式Web框架Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容GoogleAppEngine。Falcon:构建云API和网络应用后端的高性能Python框架Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。Dpark:Python版的SparkDPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。Buildbot:基于Python的持续集成测试框架Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。Zerorpc:基于ZeroMQ的高性能分布式RPC框架Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和Zerorpc一起使用的ServiceAPI被称为zeroservice。Zerorpc可以通过编程或命令行方式调用。Bottle:微型PythonWeb框架Bottle是一个简单高效的遵循WSGI的微型pythonWeb框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。Tornado:异步非阻塞IO的PythonWeb框架Tornado的全称是ToradoWebServer,从名字上看就可知道它可以用作Web服务器,但同时它也是一个PythonWeb的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。webpy:轻量级的PythonWeb框架webpy的设计理念力求精简(Keepitsimpleandpowerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。Scrapy:Python的爬虫框架Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。