导航:首页 > 编程语言 > python线性模型题

python线性模型题

发布时间:2023-05-27 14:26:40

A. python 求解线性方程

问题有问题吧,不过我把应该做的过程给你。迹卜

# 结果
r = []

# 步长
step = 0.00000000001

# 初始化x
x = step

while x < 10:
# 计算y
y = 0.5 * (10 - x)
# 判断符合条件的x, y
if y - x - 0.1 >= 0 and x - y - 0.5 >= 0:
r.append((x, y))
x += step

结果

设置步长,步长姿链穗越小越精准。

先把方程转换一下 10*x+20*y=100 -> y = 0.5 * (10 - x)

题中,y >唤念 0, 所以 10 - x > 0, 所以 x < 10, 遍历 0 < x < 10。记录所有符合条件的x,y

B. 万字教你如何用 Python 实现线性规划

想象一下,您有一个线性方程组和不等式系统。这样的系统通常有许多可能的解决方案。线性规划是一组数学和计算工具,可让您找到该系统的特定解,该解对应于某些其他线性函数的最大值或最小值。

混合整数线性规划是 线性规划 的扩展。它处理至少一个变量采用离散整数而不是连续值的问题。尽管乍一看混合整数问题与连续变量问题相似,但它们在灵活性和精度方面具有显着优势。

整数变量对于正确表示自然用整数表示的数量很重要,例如生产的飞机数量或服务的客户数量。

一种特别重要的整数变量是 二进制变量 。它只能取 的值,在做出是或否的决定时很有用,例如是否应该建造工厂或者是否应该打开或关闭机器。您还可以使用它们来模拟逻辑约束。

线性规划是一种基本的优化技术,已在科学和数学密集型领域使用了数十年。它精确、相对快速,适用于一系列实际应用。

混合整数线性规划允许您克服线性规划的许多限制。您可以使用分段线性函数近似非线性函数、使用半连续变量、模型逻辑约束等。它是一种计算密集型工具,但计算机硬件和软件的进步使其每天都更加适用。

通常,当人们试图制定和解决优化问题时,第一个问题是他们是否可以应用线性规划或混合整数线性规划。

以下文章说明了线性规划和混合整数线性规划的一些用例:

随着计算机能力的增强、算法的改进以及更多用户友好的软件解决方案的出现,线性规划,尤其是混合整数线性规划的重要性随着时间的推移而增加。

解决线性规划问题的基本方法称为,它有多种变体。另一种流行的方法是。

混合整数线性规划问题可以通过更复杂且计算量更大的方法来解决,例如,它在幕后使用线性规划。这种方法的一些变体是,它涉及使用 切割平面 ,以及。

有几种适用于线性规划和混合整数线性规划的合适且众所周知的 Python 工具。其中一些是开源的,而另一些是专有的。您是否需要免费或付费工具取决于问题的规模和复杂性,以及对速度和灵活性的需求。

值得一提的是,几乎所有广泛使用的线性规划和混合整数线性规划库都是以 Fortran 或 C 或 C++ 原生和编写的。这是因为线性规划需要对(通常很大)矩阵进行计算密集型工作。此类库称为求解器。Python 工具只是求解器的包装器。

Python 适合围绕本机库构建包装器,因为它可以很好地与 C/C++ 配合使用。对于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有关此酷功能的更多信息,请查看以下资源:

基本上,当您定义和求解模型时,您使用 Python 函数或方法调用低级库,该库执行实际优化工作并将解决方案返回给您的 Python 对象。

几个免费的 Python 库专门用于与线性或混合整数线性规划求解器交互:

在本教程中,您将使用SciPy和PuLP来定义和解决线性规划问题。

在本节中,您将看到线性规划问题的两个示例:

您将在下一节中使用 Python 来解决这两个问题。

考虑以下线性规划问题:

你需要找到X和Ÿ使得红色,蓝色和黄色的不平等,以及不平等X 0和ÿ 0,是满意的。同时,您的解决方案必须对应于z的最大可能值。

您需要找到的自变量(在本例中为 x y )称为 决策变量 。要最大化或最小化的决策变量的函数(在本例中为 z) 称为 目标函数 成本函数 或仅称为 目标 。您需要满足的 不等式 称为 不等式约束 。您还可以在称为 等式约束 的约束中使用方程。

这是您如何可视化问题的方法:

红线代表的功能2 X + Ý = 20,和它上面的红色区域示出了红色不等式不满足。同样,蓝线是函数 4 x + 5 y = 10,蓝色区域被禁止,因为它违反了蓝色不等式。黄线是 x + 2 y = 2,其下方的黄色区域是黄色不等式无效的地方。

如果您忽略红色、蓝色和黄色区域,则仅保留灰色区域。灰色区域的每个点都满足所有约束,是问题的潜在解决方案。该区域称为 可行域 ,其点为 可行解 。在这种情况下,有无数可行的解决方案。

您想最大化z。对应于最大z的可行解是 最优解 。如果您尝试最小化目标函数,那么最佳解决方案将对应于其可行的最小值。

请注意,z是线性的。你可以把它想象成一个三维空间中的平面。这就是为什么最优解必须在可行区域的 顶点 或角上的原因。在这种情况下,最佳解决方案是红线和蓝线相交的点,稍后您将看到。

有时,可行区域的整个边缘,甚至整个区域,都可以对应相同的z值。在这种情况下,您有许多最佳解决方案。

您现在已准备好使用绿色显示的附加等式约束来扩展问题:

方程式 x + 5 y = 15,以绿色书写,是新的。这是一个等式约束。您可以通过向上一张图像添加相应的绿线来将其可视化:

现在的解决方案必须满足绿色等式,因此可行区域不再是整个灰色区域。它是绿线从与蓝线的交点到与红线的交点穿过灰色区域的部分。后一点是解决方案。

如果插入x的所有值都必须是整数的要求,那么就会得到一个混合整数线性规划问题,可行解的集合又会发生变化:

您不再有绿线,只有沿线的x值为整数的点。可行解是灰色背景上的绿点,此时最优解离红线最近。

这三个例子说明了 可行的线性规划问题 ,因为它们具有有界可行区域和有限解。

如果没有解,线性规划问题是 不可行的 。当没有解决方案可以同时满足所有约束时,通常会发生这种情况。

例如,考虑如果添加约束x + y 1会发生什么。那么至少有一个决策变量(x或y)必须是负数。这与给定的约束x 0 和y 0相冲突。这样的系统没有可行的解决方案,因此称为不可行的。

另一个示例是添加与绿线平行的第二个等式约束。这两行没有共同点,因此不会有满足这两个约束的解决方案。

一个线性规划问题是 无界的 ,如果它的可行区域是无界,将溶液不是有限。这意味着您的变量中至少有一个不受约束,可以达到正无穷大或负无穷大,从而使目标也无限大。

例如,假设您采用上面的初始问题并删除红色和黄色约束。从问题中删除约束称为 放松 问题。在这种情况下,x和y不会在正侧有界。您可以将它们增加到正无穷大,从而产生无限大的z值。

在前面的部分中,您研究了一个与任何实际应用程序无关的抽象线性规划问题。在本小节中,您将找到与制造业资源分配相关的更具体和实用的优化问题。

假设一家工厂生产四种不同的产品,第一种产品的日产量为x ₁,第二种产品的产量为x 2,依此类推。目标是确定每种产品的利润最大化日产量,同时牢记以下条件:

数学模型可以这样定义:

目标函数(利润)在条件 1 中定义。人力约束遵循条件 2。对原材料 A 和 B 的约束可以从条件 3 和条件 4 中通过对每种产品的原材料需求求和得出。

最后,产品数量不能为负,因此所有决策变量必须大于或等于零。

与前面的示例不同,您无法方便地将其可视化,因为它有四个决策变量。但是,无论问题的维度如何,原理都是相同的。

在本教程中,您将使用两个Python 包来解决上述线性规划问题:

SciPy 设置起来很简单。安装后,您将拥有开始所需的一切。它的子包 scipy.optimize 可用于线性和非线性优化。

PuLP 允许您选择求解器并以更自然的方式表述问题。PuLP 使用的默认求解器是COIN-OR Branch and Cut Solver (CBC)。它连接到用于线性松弛的COIN-OR 线性规划求解器 (CLP)和用于切割生成的COIN-OR 切割生成器库 (CGL)。

另一个伟大的开源求解器是GNU 线性规划工具包 (GLPK)。一些着名且非常强大的商业和专有解决方案是Gurobi、CPLEX和XPRESS。

除了在定义问题时提供灵活性和运行各种求解器的能力外,PuLP 使用起来不如 Pyomo 或 CVXOPT 等替代方案复杂,后者需要更多的时间和精力来掌握。

要学习本教程,您需要安装 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。

您可以使用pip以下方法安装两者:

您可能需要运行pulptest或sudo pulptest启用 PuLP 的默认求解器,尤其是在您使用 Linux 或 Mac 时:

或者,您可以下载、安装和使用 GLPK。它是免费和开源的,适用于 Windows、MacOS 和 Linux。在本教程的后面部分,您将看到如何将 GLPK(除了 CBC)与 PuLP 一起使用。

在 Windows 上,您可以下载档案并运行安装文件。

在 MacOS 上,您可以使用 Homebrew:

在 Debian 和 Ubuntu 上,使用apt来安装glpk和glpk-utils:

在Fedora,使用dnf具有glpk-utils:

您可能还会发现conda对安装 GLPK 很有用:

安装完成后,可以查看GLPK的版本:

有关详细信息,请参阅 GLPK 关于使用Windows 可执行文件和Linux 软件包进行安装的教程。

在本节中,您将学习如何使用 SciPy优化和求根库进行线性规划。

要使用 SciPy 定义和解决优化问题,您需要导入scipy.optimize.linprog():

现在您已经linprog()导入,您可以开始优化。

让我们首先解决上面的线性规划问题:

linprog()仅解决最小化(而非最大化)问题,并且不允许具有大于或等于符号 ( ) 的不等式约束。要解决这些问题,您需要在开始优化之前修改您的问题:

引入这些更改后,您将获得一个新系统:

该系统与原始系统等效,并且将具有相同的解决方案。应用这些更改的唯一原因是克服 SciPy 与问题表述相关的局限性。

下一步是定义输入值:

您将上述系统中的值放入适当的列表、元组或NumPy 数组中:

注意:请注意行和列的顺序!

约束左侧和右侧的行顺序必须相同。每一行代表一个约束。

来自目标函数和约束左侧的系数的顺序必须匹配。每列对应一个决策变量。

下一步是以与系数相同的顺序定义每个变量的界限。在这种情况下,它们都在零和正无穷大之间:

此语句是多余的,因为linprog()默认情况下采用这些边界(零到正无穷大)。

注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。

最后,是时候优化和解决您感兴趣的问题了。你可以这样做linprog():

参数c是指来自目标函数的系数。A_ub和b_ub分别与不等式约束左边和右边的系数有关。同样,A_eq并b_eq参考等式约束。您可以使用bounds提供决策变量的下限和上限。

您可以使用该参数method来定义要使用的线性规划方法。有以下三种选择:

linprog() 返回具有以下属性的数据结构:

您可以分别访问这些值:

这就是您获得优化结果的方式。您还可以以图形方式显示它们:

如前所述,线性规划问题的最优解位于可行区域的顶点。在这种情况下,可行区域只是蓝线和红线之间的绿线部分。最优解是代表绿线和红线交点的绿色方块。

如果要排除相等(绿色)约束,只需删除参数A_eq并b_eq从linprog()调用中删除:

解决方案与前一种情况不同。你可以在图表上看到:

在这个例子中,最优解是红色和蓝色约束相交的可行(灰色)区域的紫色顶点。其他顶点,如黄色顶点,具有更高的目标函数值。

您可以使用 SciPy 来解决前面部分所述的资源分配问题:

和前面的例子一样,你需要从上面的问题中提取必要的向量和矩阵,将它们作为参数传递给.linprog(),然后得到结果:

结果告诉您最大利润是1900并且对应于x ₁ = 5 和x ₃ = 45。在给定条件下生产第二和第四个产品是没有利润的。您可以在这里得出几个有趣的结论:

opt.statusis0和opt.successis True,说明优化问题成功求解,最优可行解。

SciPy 的线性规划功能主要用于较小的问题。对于更大和更复杂的问题,您可能会发现其他库更适合,原因如下:

幸运的是,Python 生态系统为线性编程提供了几种替代解决方案,这些解决方案对于更大的问题非常有用。其中之一是 PuLP,您将在下一节中看到它的实际应用。

PuLP 具有比 SciPy 更方便的线性编程 API。您不必在数学上修改您的问题或使用向量和矩阵。一切都更干净,更不容易出错。

像往常一样,您首先导入您需要的内容:

现在您已经导入了 PuLP,您可以解决您的问题。

您现在将使用 PuLP 解决此系统:

第一步是初始化一个实例LpProblem来表示你的模型:

您可以使用该sense参数来选择是执行最小化(LpMinimize或1,这是默认值)还是最大化(LpMaximize或-1)。这个选择会影响你的问题的结果。

一旦有了模型,就可以将决策变量定义为LpVariable类的实例:

您需要提供下限,lowBound=0因为默认值为负无穷大。该参数upBound定义了上限,但您可以在此处省略它,因为它默认为正无穷大。

可选参数cat定义决策变量的类别。如果您使用的是连续变量,则可以使用默认值"Continuous"。

您可以使用变量x和y创建表示线性表达式和约束的其他 PuLP 对象:

当您将决策变量与标量相乘或构建多个决策变量的线性组合时,您会得到一个pulp.LpAffineExpression代表线性表达式的实例。

注意:您可以增加或减少变量或表达式,你可以乘他们常数,因为纸浆类实现一些Python的特殊方法,即模拟数字类型一样__add__(),__sub__()和__mul__()。这些方法用于像定制运营商的行为+,-和*。

类似地,您可以将线性表达式、变量和标量与运算符 ==、=以获取表示模型线性约束的纸浆.LpConstraint实例。

注:也有可能与丰富的比较方法来构建的约束.__eq__(),.__le__()以及.__ge__()定义了运营商的行为==,=。

考虑到这一点,下一步是创建约束和目标函数并将它们分配给您的模型。您不需要创建列表或矩阵。只需编写 Python 表达式并使用+=运算符将它们附加到模型中:

在上面的代码中,您定义了包含约束及其名称的元组。LpProblem允许您通过将约束指定为元组来向模型添加约束。第一个元素是一个LpConstraint实例。第二个元素是该约束的可读名称。

设置目标函数非常相似:

或者,您可以使用更短的符号:

现在您已经添加了目标函数并定义了模型。

注意:您可以使用运算符将 约束或目标附加到模型中,+=因为它的类LpProblem实现了特殊方法.__iadd__(),该方法用于指定 的行为+=。

对于较大的问题,lpSum()与列表或其他序列一起使用通常比重复+运算符更方便。例如,您可以使用以下语句将目标函数添加到模型中:

它产生与前一条语句相同的结果。

您现在可以看到此模型的完整定义:

模型的字符串表示包含所有相关数据:变量、约束、目标及其名称。

注意:字符串表示是通过定义特殊方法构建的.__repr__()。有关 的更多详细信息.__repr__(),请查看Pythonic OOP 字符串转换:__repr__vs__str__ .

最后,您已准备好解决问题。你可以通过调用.solve()你的模型对象来做到这一点。如果要使用默认求解器 (CBC),则不需要传递任何参数:

.solve()调用底层求解器,修改model对象,并返回解决方案的整数状态,1如果找到了最优解。有关其余状态代码,请参阅LpStatus[]。

你可以得到优化结果作为 的属性model。该函数value()和相应的方法.value()返回属性的实际值:

model.objective持有目标函数model.constraints的值,包含松弛变量的值,以及对象x和y具有决策变量的最优值。model.variables()返回一个包含决策变量的列表:

如您所见,此列表包含使用 的构造函数创建的确切对象LpVariable。

结果与您使用 SciPy 获得的结果大致相同。

注意:注意这个方法.solve()——它会改变对象的状态,x并且y!

您可以通过调用查看使用了哪个求解器.solver:

输出通知您求解器是 CBC。您没有指定求解器,因此 PuLP 调用了默认求解器。

如果要运行不同的求解器,则可以将其指定为 的参数.solve()。例如,如果您想使用 GLPK 并且已经安装了它,那么您可以solver=GLPK(msg=False)在最后一行使用。请记住,您还需要导入它:

现在你已经导入了 GLPK,你可以在里面使用它.solve():

该msg参数用于显示来自求解器的信息。msg=False禁用显示此信息。如果要包含信息,则只需省略msg或设置msg=True。

您的模型已定义并求解,因此您可以按照与前一种情况相同的方式检查结果:

使用 GLPK 得到的结果与使用 SciPy 和 CBC 得到的结果几乎相同。

一起来看看这次用的是哪个求解器:

正如您在上面用突出显示的语句定义的那样model.solve(solver=GLPK(msg=False)),求解器是 GLPK。

您还可以使用 PuLP 来解决混合整数线性规划问题。要定义整数或二进制变量,只需传递cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不变:

在本例中,您有一个整数变量并获得与之前不同的结果:

Nowx是一个整数,如模型中所指定。(从技术上讲,它保存一个小数点后为零的浮点值。)这一事实改变了整个解决方案。让我们在图表上展示这一点:

如您所见,最佳解决方案是灰色背景上最右边的绿点。这是两者的最大价值的可行的解决方案x和y,给它的最大目标函数值。

GLPK 也能够解决此类问题。

现在你可以使用 PuLP 来解决上面的资源分配问题:

定义和解决问题的方法与前面的示例相同:

在这种情况下,您使用字典 x来存储所有决策变量。这种方法很方便,因为字典可以将决策变量的名称或索引存储为键,将相应的LpVariable对象存储为值。列表或元组的LpVariable实例可以是有用的。

上面的代码产生以下结果:

如您所见,该解决方案与使用 SciPy 获得的解决方案一致。最有利可图的解决方案是每天生产5.0第一件产品和45.0第三件产品。

让我们把这个问题变得更复杂和有趣。假设由于机器问题,工厂无法同时生产第一种和第三种产品。在这种情况下,最有利可图的解决方案是什么?

现在您有另一个逻辑约束:如果x ₁ 为正数,则x ₃ 必须为零,反之亦然。这是二元决策变量非常有用的地方。您将使用两个二元决策变量y ₁ 和y ₃,它们将表示是否生成了第一个或第三个产品:

除了突出显示的行之外,代码与前面的示例非常相似。以下是差异:

这是解决方案:

事实证明,最佳方法是排除第一种产品而只生产第三种产品。

就像有许多资源可以帮助您学习线性规划和混合整数线性规划一样,还有许多具有 Python 包装器的求解器可用。这是部分列表:

其中一些库,如 Gurobi,包括他们自己的 Python 包装器。其他人使用外部包装器。例如,您看到可以使用 PuLP 访问 CBC 和 GLPK。

您现在知道什么是线性规划以及如何使用 Python 解决线性规划问题。您还了解到 Python 线性编程库只是本机求解器的包装器。当求解器完成其工作时,包装器返回解决方案状态、决策变量值、松弛变量、目标函数等。

C. python多元线性回归怎么计算

1、什么是多元线性回归模型?

当y值的影响因素不唯一时,采用多元线性回归模型。

y =y=β0+β1x1+β2x2+...+βnxn

例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.

2、使用pandas来读取数据

pandas 是一个用于数据探索、数据分析和数据处理的python库

[python]view plain

D. 使用Python的线性回归问题,怎么解决

本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。

1) 预测房子价格

闪电侠是一部由剧作家/制片人Greg Berlanti、Andrew Kreisberg和Geoff Johns创作,由CW电视台播放的美国电视连续剧。它基于DC漫画角色闪电侠(Barry Allen),一个具有超人速度移动能力的装扮奇特的打击犯罪的超级英雄,这个角色是由Robert Kanigher、John Broome和Carmine Infantino创作。它是绿箭侠的衍生作品,存在于同一世界。该剧集的试播篇由Berlanti、Kreisberg和Johns写作,David Nutter执导。该剧集于2014年10月7日在北美首映,成为CW电视台收视率最高的电视节目。

绿箭侠是一部由剧作家/制片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg创作的电视连续剧。它基于DC漫画角色绿箭侠,一个由Mort Weisinger和George Papp创作的装扮奇特的犯罪打击战士。它于2012年10月10日在北美首映,与2012年末开始全球播出。主要拍摄于Vancouver、British Columbia、Canada,该系列讲述了亿万花花公子Oliver Queen,由Stephen Amell扮演,被困在敌人的岛屿上五年之后,回到家乡打击犯罪和腐败,成为一名武器是弓箭的神秘义务警员。不像漫画书中,Queen最初没有使用化名”绿箭侠“。

由于这两个节目并列为我最喜爱的电视节目头衔,我一直想知道哪个节目更受其他人欢迎——谁会最终赢得这场收视率之战。 所以让我们写一个程序来预测哪个电视节目会有更多观众。 我们需要一个数据集,给出每一集的观众。幸运地,我从维基网络上得到了这个数据,并整理成一个.csv文件。它如下所示。

闪电侠

闪电侠美国观众数

绿箭侠

绿箭侠美国观众数

1 4.83 1 2.84

2 4.27 2 2.32

3 3.59 3 2.55

4 3.53 4 2.49

5 3.46 5 2.73

6 3.73 6 2.6

7 3.47 7 2.64

8 4.34 8 3.92

9 4.66 9 3.06

观众数以百万为单位。

解决问题的步骤:

首先我们需要把数据转换为X_parameters和Y_parameters,不过这里我们有两个X_parameters和Y_parameters。因此,把他们命名为flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然后我们需要把数据拟合为两个不同的线性回归模型——先是闪电侠,然后是绿箭侠。 接着我们需要预测两个电视节目下一集的观众数量。 然后我们可以比较结果,推测哪个节目会有更多观众。

步骤1

导入我们的程序包:

Python

1

2

3

4

5

6

7

# Required Packages

import csv

import sys

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn import datasets, linear_model

步骤2

写一个函数,把我们的数据集作为输入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

# Function to get data

def get_data(file_name):

data = pd.read_csv(file_name)

flash_x_parameter = []

flash_y_parameter = []

arrow_x_parameter = []

arrow_y_parameter = []

for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):

flash_x_parameter.append([float(x1)])

flash_y_parameter.append(float(y1))

arrow_x_parameter.append([float(x2)])

arrow_y_parameter.append(float(y2))

return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter

现在我们有了我们的参数,来写一个函数,用上面这些参数作为输入,给出一个输出,预测哪个节目会有更多观众。

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

# Function to know which Tv show will have more viewers

def more_viewers(x1,y1,x2,y2):

regr1 = linear_model.LinearRegression()

regr1.fit(x1, y1)

predicted_value1 = regr1.predict(9)

print predicted_value1

regr2 = linear_model.LinearRegression()

regr2.fit(x2, y2)

predicted_value2 = regr2.predict(9)

#print predicted_value1

#print predicted_value2

if predicted_value1 > predicted_value2:

print "The Flash Tv Show will have more viewers for next week"

else:

print "Arrow Tv Show will have more viewers for next week"

把所有东西写在一个文件中。打开你的编辑器,把它命名为prediction.py,复制下面的代码到prediction.py中。

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

# Required Packages

import csv

import sys

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from sklearn import datasets, linear_model

# Function to get data

def get_data(file_name):

data = pd.read_csv(file_name)

flash_x_parameter = []

flash_y_parameter = []

arrow_x_parameter = []

arrow_y_parameter = []

for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):

flash_x_parameter.append([float(x1)])

flash_y_parameter.append(float(y1))

arrow_x_parameter.append([float(x2)])

arrow_y_parameter.append(float(y2))

return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter

# Function to know which Tv show will have more viewers

def more_viewers(x1,y1,x2,y2):

regr1 = linear_model.LinearRegression()

regr1.fit(x1, y1)

predicted_value1 = regr1.predict(9)

print predicted_value1

regr2 = linear_model.LinearRegression()

regr2.fit(x2, y2)

predicted_value2 = regr2.predict(9)

#print predicted_value1

#print predicted_value2

if predicted_value1 > predicted_value2:

print "The Flash Tv Show will have more viewers for next week"

else:

print "Arrow Tv Show will have more viewers for next week"

x1,y1,x2,y2 = get_data('input_data.csv')

#print x1,y1,x2,y2

more_viewers(x1,y1,x2,y2)

可能你能猜出哪个节目会有更多观众——但运行一下这个程序看看你猜的对不对。

3) 替换数据集中的缺失值

有时候,我们会遇到需要分析包含有缺失值的数据的情况。有些人会把这些缺失值舍去,接着分析;有些人会用最大值、最小值或平均值替换他们。平均值是三者中最好的,但可以用线性回归来有效地替换那些缺失值。

这种方法差不多像这样进行。

首先我们找到我们要替换那一列里的缺失值,并找出缺失值依赖于其他列的哪些数据。把缺失值那一列作为Y_parameters,把缺失值更依赖的那些列作为X_parameters,并把这些数据拟合为线性回归模型。现在就可以用缺失值更依赖的那些列预测缺失的那一列。

一旦这个过程完成了,我们就得到了没有任何缺失值的数据,供我们自由地分析数据。

为了练习,我会把这个问题留给你,所以请从网上获取一些缺失值数据,解决这个问题。一旦你完成了请留下你的评论。我很想看看你的结果。

个人小笔记:

我想分享我个人的数据挖掘经历。记得在我的数据挖掘引论课程上,教师开始很慢,解释了一些数据挖掘可以应用的领域以及一些基本概念。然后突然地,难度迅速上升。这令我的一些同学感到非常沮丧,被这个课程吓到,终于扼杀了他们对数据挖掘的兴趣。所以我想避免在我的博客文章中这样做。我想让事情更轻松随意。因此我尝试用有趣的例子,来使读者更舒服地学习,而不是感到无聊或被吓到。

谢谢读到这里——请在评论框里留下你的问题或建议,我很乐意回复你。

E. python时间序列模型预测为什么时一条直线

python时间序列模型预测时一条直线是因为是线性模型的原因。线性模型也称作趋势模型,它表示一个时间序列可以用一条直线来表示。它的基本等式:以一个公司的销售总额为例,一开始的初始是5000,每隔一个时间步长增加2500。指数平滑法是时间序列分析方法中的一种。它是一种用于预测未来发展趋势的建模算法。它有三种不同形式:一次指数平滑法、二次指数平滑法、及三次指数平滑法。三种指数平滑法都要更新上一时间步长的计算结果,并使用当前时间步长的数据中包含的新信息。通过混合新信息和旧信息来实现。

F. python解决jacob迭代法求解线性方程组

题主好. 经典的 Jacobi 迭代算法如下:

设 A = D - E, 则 x = D^{-1}*b + D^{-1}*E*x = C + T*x

可以参考如下代码(复制代码后请注意缩进):

import numpy as np

def linalg_solve_jacobi(A, b, x0, max_it, tol=1.0e-7):

# 判断 A, b 的维数是否正确

if A.shape[0]!=A.shape[1] or A.shape[0]!= b.shape[0]:

raise Exception('A must be square or A and b must be compatible!')

D = np.diag(A)

# 判断对角元素是否含零

if np.amin(np.absolute(D)) < 1e-14:

raise Exception('Diagonal elements of A must not be zeros!')

# 设置初始迭代步数为0

n = 0

#

# Jacobi 算法:

# 设 A = D - E, 则 x = D^{-1}*b + D^{-1}*E*x = C + T*x

#

invD = np.diag(1.0/D) # invD is inv(D)

C = np.dot(invD,b) # C is inv(D)*b

T = np.dot(invD, np.diag(D)-A) # T is inv(D)*E

while n < max_it:

x = C + np.dot(T, x0)

if np.linalg.norm(x-x0)<tol:

break

x0[:] = x

n+=1

# 如果超过最大迭代步数, 迭代失败

if n>max_it:

raise Exception('Failed to converge within {} steps!'.format(max_it))

# 成功, 返回

return x, n



if __name__ == "__main__":

A = np.array([[10, -1, 2, 0],[-1, 11, -1, 3],

[2, -1, 10, -1], [0, 3, -1, 8]], dtype=np.float64)

b = np.array([6, 25, -11, 15], dtype=np.float64)

x0 = np.array([0,0,0,0], dtype=np.float64)

max_it = 100

tol = 1.0e-7

x,n=linalg_solve_jacobi(A, b, x0, max_it, tol)

print(x,n)

G. 根号a-+5的最小值和a的值

梯度下降是非常常用的优化算法。作为机器学习的基础知识,这是一个必须要掌握的算法。借助本文,让我们来一起详细了解一下这个算法。


前言

本文的代码可以到我的Github上获取:

https://github.com/paulQuei/gradient_descent

本文的算法示例通过Python语言实现,在实现中使用到了numpy和matplotlib。如果你不熟悉这两个工具,请自行在网上搜索教程。


关于优化

大多数学习算法都涉及某种形式的优化。优化指的是改变x以最小化或者最大化某个函数的任务。

我们通常以最小化指代大多数最优化问题。最大化可经由最小化来实现。

我们把要最小化或最大化的函数成为目标函数(objective function)或准则(criterion)。

我们通常使用一个上标*表示最小化或最大化函数的x值,记做这样:

[x^* = arg; min; f(x)]


优化本身是一个非常大的话题。如果有兴趣,可以通过《数值优化》和《运筹学》的书籍进行学习。


模型与假设函数

所有的模型都是错误的,但其中有些是有用的。– George Edward Pelham Box


模型是我们对要分析的数据的一种假设,它是为解决某个具体问题从数据中学习到的,因此它是机器学习最核心的概念。

针对一个问题,通常有大量的模型可以选择。

本文不会深入讨论这方面的内容,关于各种模型请参阅机器学习的相关书籍。本文仅以最简单的线性模型为基础来讨论梯度下降算法。

这里我们先介绍一下在监督学习(supervised learning)中常见的三个符号:


H. 如何用Python进行线性回归以及误差分析

数据挖掘中的预测问题通常分为2类:回归与分类。

简单的说回归就是预测数值,而分类是给数据打上标签归类。

本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。

本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。

拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。

代码如下:

I. 马科维茨有效前沿python求出每个点的配置比例

1.马科维茨有效前沿中每个点的配置比例可以通过求解其凸组合来确定。这需要解决一个线性规划问题,目标是最大化有效前沿上的点到要优化的点的距离,约束条件是各点的权重和为1,且每个权重大于等于0。通过求解该线性规划问题,可以得到每个点在有效前沿上的配置比例。

2.深入分析

2.1 根据马科维茨有效前沿的定义,其上每个点可以由多个极点通过凸组合得到。配置比例就是各极点在该凸组合中所占的权重。这些权重满足二次型约束:w1+w2+...+wn=1,wi≥0,i=1,2,...,n。

2.2 求解配置比例的关键在于构建一个线性规划模型。目标函数设为maximizeρ,其中ρ代表有效前沿上点到要优化的点的欧几里得距离。约束条件为wi≥0,w1+w2+...+wn=1。通过求解该线性规划问题,可以得到最优的权重配置,这些权重值即为各极点在有效前沿点上的配置比例。

2.3 上述线性规划问题可以通过python中的凸优化库cvxopt来求解。要先构建线性规划问题的矩阵形式,再使用cvxopt.solvers.lp这个函数进行求解。函数输入为目标函数矩阵、约束矩阵和变量下界上界,输出为最优化权重向量,这即为所求的配置比例。

2.4 求解配置比例需要先确定马科维茨有效前沿,这需要使用极小化方法来寻找要优化的目标函数的极小点。常用方法有梯度下降法、Newton法以及interior point method等。通过这些方腊禅法可以找到目标函数的所有极小点,构建出有效前沿,这为后续的配置比例计算提供了必要的条件。

3.建议

3.1 在马科维茨有效前沿的计算中,应采用既定的优化方法,如牛顿法,来确保找到全局最优解。这有助于构建出完备的有效前沿,为后续配置比例计算提供准确的计算基础。

3.2 线性规划建模时,目标函数和约束条件应表达清晰准确。各矩阵应事先规范化,以避免由于数据量级差异导致的计算误差。

3.3 凸优化库的选择上,推荐使用经过验证的优化库,如cvxopt。这类库运算速度较快,且可以直接求解various 类型的凸规划问题,避免由于算法实现带来的误差。

3.4 配置比例的计算结果还需要进行正确性验证。可以通过计算有效前沿上各点的凸组合,与原有效前沿点的坐标进行比较,看其误差是否在可接受范围内。这一验证过程是保山毕证最终计算结逗局芹果正确的必要步骤。

J. python 线性模型

因变量是你自己确定的,一般主成分得分是作为自变量的,叫主成分回归分析

阅读全文

与python线性模型题相关的资料

热点内容
安卓如何传输图片给苹果 浏览:829
可编程控制器原理应用网络 浏览:587
社畜解压是什么意思 浏览:436
吉利博越用哪个app啊 浏览:513
西安单片机晶振电容 浏览:187
分地面积的算法 浏览:179
安卓手机升级包后怎么安装 浏览:262
济南压缩饼干哪有卖 浏览:524
怎么用rar解压百度网盘 浏览:660
手机哪款解压缩软件好用 浏览:80
失控的算法代码 浏览:297
程序员说有人爱你怎么回答 浏览:106
腾讯游戏安卓怎么用ios登录 浏览:759
石狮云存储服务器 浏览:180
python渗透入门到精通 浏览:272
如何真机调试安卓进程 浏览:739
农行app怎么交公共维修基金 浏览:667
python中字典增加元素 浏览:240
服务器端渲染的数据怎么爬 浏览:164
压缩空气喷射器 浏览:490