A. 关于python中的随机数生成步骤和随机数质量
Python生成随机数和随机数质量的方法,random.random()用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成随机数:
printrandom.uniform(10,20)
printrandom.uniform(20,10)
#----
#18.7356606526
#12.5798298022
random.randint
用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,Python生成随机数
printrandom.randint(12,20)#生成的随机数n:12<=n<=20
printrandom.randint(20,20)#结果永远是20
#printrandom.randint(20,10)#该语句是错误的。
random.randrange方法从指定范围内,按指定基数递增的集合中 ,下面对python生成随机数的应用程序的部分介绍:
1.随机整数:
>>>importrandom
>>>random.randint(0,99)
21
2.随机选取0到100间的偶数:
>>>importrandom
>>>random.randrange(0,101,2)
42
3.随机浮点数:
>>>importrandom
>>>random.random()
0.85415370477785668
>>>random.uniform(1,10)
5.4221167969800881
4.随机字符:
>>>importrandom
>>>random.choice('abcdefg&#%^*f')
'd'
5.多个字符中选取特定数量的字符:
>>>importrandom
random.sample('abcdefghij',3)
['a','d','b']
6.多个字符中选取特定数量的字符组成新字符串:
>>>importrandom
>>>importstring
>>>string.join(random.sample(['a','b','c','d','e','f','g','h','i','j'],3)).r
eplace("","")
'fih'
B. python里面如何生成随机数
import
random
testlist
=
[1,3,4,5]
a,b
=
1,5
random.random()
生成0至1之间的随机浮点数,结果大于等于0.0,小于1.0
random.randint(a,b)
生成1至5之间的随机整数,结果大于等于1,小于等于5,a必须小于等于b
random.choice(testlist)从testlist中随机挑选一个数,也可以是元组、字符串
C. 在python中要生成随机数,应该使用
在Python中要生成随机数,可以使用random模块中的random函数。这个函数会返回一个0到1之间(包含0和1)的随机浮点数。我们可以通过乘以一个数并进行取整运算来前仿生成特定范围内的整数随机数。比如生成1到10之间的随机整数,可以使用int(random.random() * 10) 1。此外,random模块中还可以使用纯悔伏randint函数直接生成指定范围内的随机整数,比如生做携成1到10之间的随机整数,可以使用random.randint(1,10)。当然,生成随机数还有许多其他的函数和技巧,在实际编程中要根据具体情况选择合适的方法。
D. python用什么函数产生随机数
在python中用于生成随机数的模块是random,在使用前需要import
random.random:
random.random():生成一个0-1之间的随机浮点数.例:
[python] view plain
import random
print random.random()
# 0.87594424128
random.uniform
random.uniform(a, b):生成[a,b]之间的浮点数.例:
[python] view plain
import random
print random.uniform(0, 10)
# 5.27462570463
random.ranint
random.randint(a, b):生成[a,b]之间的整数.例:
[python] view plain
import random
print random.randint(0, 10)
# 8
random.randrange
random.randrange(a, b, step):在指定的集合[a,b)中,以step为基数随机取一个数.如random.randrange(0, 20, 2),相当于从[0,2,4,6,...,18]中随机取一个.例:
[python] view plain
import random
print random.randrange(0, 20, 2)
# 14
E. python里面如何生成随机数
random模块
随机整数:random.randint(a,b):返回随机整数x,a<=x<=b
random.randrange(start,stop,[,step]):返回一个范围在(start,stop,step)之间的随机整数,不包括结束值。
随机实数:random.random( ):返回0到1之间的浮点数
random.uniform(a,b):返回指定范围内的浮点数。
F. python中的随机数是怎么实现的
PYTHON中的伪随机数发生器用的是梅森旋转算法。
梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。
梅森旋转算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度运算库和GSL的默认伪随机数产生器。从C++11开始,C++也可以使用这种算法。
整个算法主要分为三个阶段:获得基础的梅森旋转链;对于旋转链进行旋转算法;对于旋转算法所得的结果进行处理。
算法实现的过程中,参数的选取取决于梅森素数,故此得名。
梅森素数由梅森数而来。所谓梅森数,是指形如2↑p-1的一类数,其中指数p是素数,常记为Mp 。如果梅森数是素数,就称为梅森素数。
例如4-1=3,8-1=7,16-1=15(不是素数),32-1=31,64-1=63(不是素数)等等。
G. python中怎么设置随机产生数字
题主你好,
python中random模块的randint函数可以产生随机函数:
希望可以帮到题主,欢迎追问.
H. 用python生成随机数的几种方法
1 从给定参数的正态分布中生成随机数
当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:
import numpy as np# 定义从正态分布中获取随机数的函数def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058
2 从给定参数的均匀分布中获取随机数的函数
考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。
import numpy as np# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114
3 按照指定概率生成随机数
有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。
3.1 按照指定概率从数字列表中随机抽取数字
假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 返回值 return number# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:1
3.2 按照指定概率从区间列表中的某个区间内生成随机数
给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:
import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 从区间[number. number - 1]上随机抽取一个值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:3.49683787011193