① python中迭代和递归的区别
在函数内部,调用函数自身的编程技巧称为递归( recursion)
递归是要干活的,需要完成任务。
利用 for 循环来遍历一个列表(list)或元组(tuple),将值依次取出,这种方法我们称为迭代。
而迭代,只出工,不出力。
② 学习python的话大概要学习哪些内容
想要学习Python,需要掌握的内容还是比较多的,对于自学的同学来说会有一些难度,不推荐自学能力差的人。我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:
Python学习顺序:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用Linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
②Python软件开发进阶
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
③Python全栈式WEB工程师
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
④Python多领域开发
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。
祝你学有所成,望采纳。
③ 怎么用python实现迭代傅里叶变换即GS算法
import numpy as np
def read_data(filename):
'''读取文本数据,格式:特征1 特征2 …… 类别'''
f=open(filename,'rt')
row_list=f.readlines() #以每行作为列表
f.close()
data_array=[]
labels_vector=[]
while True:
if not row_list:
break
row=row_list.pop(0).strip().split('\t') #去除换行号,分割制表符
temp_data_row=[float(a) for a in row[:-1]] #将字符型转换为浮点型
data_array.append(temp_data_row) #取特征值
labels_vector.append(row[-1]) #取最后一个作为类别标签
return np.array(data_array),np.array(labels_vector)
def classify(test_data,dataset,labels,k):
'''分类'''
diff_dis_array=test_data-dataset #使用numpy的broadcasting
dis_array=(np.add.rece(diff_dis_array**2,axis=-1))**0.5 #求距离
dis_array_index=np.argsort(dis_array) #升序距离的索引
class_count={}
for i in range(k):
temp_label=labels[dis_array_index[i]]
class_count[temp_label]=class_count.get(temp_label,0)+1 #获取类别及其次数的字典
sorted_class_count=sorted(class_count.items(), key=lambda item:item[1],reverse=True) #字典的值按降序排列
return sorted_class_count[0][0] #返回元组列表的[0][0]
④ python中的迭代式什么意思
数学上面的定义:迭代公式就是指用现在的值,代到一个公式里面,算出下一个值,再用下一个值代入公式,如此往复地代。比如:x=(x+2/x)/2 你随便拿一个x=10代入,得x=(10+2/10)/2=5.1,再代进去x=(5.1+2/5.1)/2=2.746,再代入得1.737,以此类推。
在python中,迭代式也可以是递归的调用,下面给你举个例子:
def f(n):
if n == 0 or n == 1 or n == 2: return 1
else: return f(n-1) + f(n-2)
这就是一个简单的第n项斐波那契数的求法,这里就用的是迭代式。另外的例子就是牛顿迭代法,采用逐次渐进的效果求出n的开方数,下面是例子:
def f(guess):
return guess ** 2
def fd(guess):
return 2 * guess
def SquareRootNR(x, epsilon):
guess = x / 2.0
diff = f(guess) - x
ctr = 1
while abs(diff) > epsilon and ctr <= 100:
guess = guess - diff / fd(guess)
diff = f(guess) - x
ctr += 1。
⑤ Python中的“迭代”详解
迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项。
所有序列都是可以迭代的。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串,然后可以逐个单词迭代。
接下来测试 Sentence 实例能否迭代
序列可以迭代的原因:
iter()
解释器需要迭代对象 x 时,会自动调用iter(x)。
内置的 iter 函数有以下作用:
由于序列都实现了 __getitem__ 方法,所以都可以迭代。
可迭代对象:使用内置函数 iter() 可以获取迭代器的对象。
与迭代器的关系:Python 从可迭代对象中获取迭代器。
下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了。
如果没有 for 语句,使用 while 循环模拟,要写成下面这样:
Python 内部会处理 for 循环和其他迭代上下文(如列表推导,元组拆包等等)中的 StopIteration 异常。
标准的迭代器接口有两个方法:
__next__ :返回下一个可用的元素,如果没有元素了,抛出 StopIteration 异常。
__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中。
迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代。
接下来使用迭代器模式实现 Sentence 类:
注意, 不要 在 Sentence 类中实现 __next__ 方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器。
为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是,每次调用 iter(my_iterable) 都新建一个独立的迭代器。
所以总结下来就是:
实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类。
只要 Python 函数的定义体中有 yield 关键字,该函数就是生成器函数。调用生成器函数,就会返回一个生成器对象。
生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前,执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致。
如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒。 惰性 ,是如今人们认为最好的特质。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理。
目前实现的几版 Sentence 类都不具有惰性,因为 __init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多,取决于文本中有多少非单词字符)。
re.finditer 函数是 re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词。
标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素。
第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 ,有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中。
以下为这些函数的演示:
第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果。
以下为这些函数的用法:
第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素。
以下为演示:
第四组是从一个元素中产出多个值,扩展输入的可迭代对象。
以下为演示:
第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。
下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数”,其实,这些内置函数都可以用 functools.rece 函数实现,但内置更加方便,而且还有一些优点。
参考教程:
《流畅的python》 P330 - 363
⑥ python深度学习中经过卷积神经网络训练后的输出怎样查看
这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
⑦ Python基础之迭代器
一.什么是迭代器
迭代器是用来迭代取值的工具。
而涉及到把多个值循环取出来的类型有:列表,字符串,元组,字段,集合,打开文件等。通过使用的遍历方式有for···in···,while等,但是,这些方式只适用于有索引的数据类型。为了解决索引取的局限性,python提供了一种 不依赖于索引的取值方式:迭代器
注意:
二.可迭代对象
可迭代对象:但凡内置有__iter__方法的都称为可迭代对象
常见的可迭代对象:
1.集合数据类型,如list,tuple,dict,set,str等
2.生成器,包括生成器和带yield的生成器函数。
三.如何创建迭代器
迭代器是一个包含数个值的对象。
迭代器是可以迭代的对象,这意味着您可以遍历所有值。
从技术上讲,在Python中,迭代器是实现迭代器协议的对象,该协议由方法 __iter__() 和 __next__() 组成。
简而言之,一个类里面实现了__iter__()和__next__()这两个魔法方法,那么这个类的对象就是可迭代对象。
四.迭代器的优缺点
1.优点
2.缺点
五.迭代器示例
另外,如果类Stu继承了Iterator,那么Stu可以不用实现__iter__()方法
遍历迭代器
StopIteration
如果你有足够的 next() 语句,或者在 for 循环中使用,则上面的例子将永远进行下去。
为了防止迭代永远进行,我们可以使用 StopIteration 语句。
在 __next__() 方法中,如果迭代完成指定的次数,我们可以添加一个终止条件来引发错误
⑧ python如何迭代列表元素,具体要求如下
["A","1"] 对应你问题里的[A,B,C,D,E] 的A?