A. 现在python微博爬虫可以爬到用户注册地址吗
现在python微博爬虫不可租知族以爬到用户注册地址。爬虫要实现的是爬取某个用户的关注和粉丝的弊弊用户公开基猛竖本信息,包括用户昵称、id、性别、所在地和其粉丝数量。
B. Python编程培训北京的哪里好,学出来可以做什么,看起来程序员厉害的不行
现在学python的人很多,如果只给一个理由的话,一句话:写起来快、看起来明白。
你要非要问它可以干什么。作为通用性的语言基本上什么都能干,除了一些对性能要求很高的场合。比较常见的领域是:web服务器、科学计算、应用内嵌脚本、系统管理(程度由高到低)。
就这个事情而言简单说说我的看法吧。
首先,我觉得赶时髦没有任何的问题(话说Python现在算时髦么,都快20年了。时髦的应该是go、hack之类的吧)。作为一个职业程序员,追赶技术的潮流本来就是很正常的事。有了什么新的工具、语言、理论。先拿来玩一玩,了解一下他的特性。这叫技术储备。一个东西之所以能流行起来必然有它的特点在里边。有的时候学些东西仅仅就是 have a fun 而已。每次都当你有需求的时候再学永远都会落后一拍,而且无法站在一个高度去选择。
举个例子:比如你现在要写个手机游戏,现在有Unity、cocos2d、cocos2d-x、cocos2d-x lua 及其他引擎可供选择。如果你从来都没有用过这几个东西你怎么选择?肯定是上网看一堆良莠不齐的博客,问问同事、学长之类的,最后凭感觉选一个就开始写。如果你只会其中一个呢?你肯定会毫不犹豫的使用你会的那个。问题在于,有的时候不同的技术方案有不同的局限性,弄不好这就是定时炸弹啊。如果这些你都用过,即使不是非常的精通。你也可以根据自己的团队组成、工期、人员招聘的难度、游戏类型等等来选择最合适的工具。等到有需求的时候根本不会有那么时间来让你每个都学一遍的。
其次,最为一个程序员,开拓视野很重要。多尝试几门语言没有任何坏处。学习其他的语言有助于你跳出自己之前的局限来看问题。语言限制了你的表达,也限制了你思考问题的方式。多了解一些不同的编程范式,有助于你加深对编程语言的了解。没有什么坏处。只是蜷缩在自己熟悉的东西里永远无法提高。
最后,我觉得你的心态有很大的问题。为什么这么说呢?如果很多人不断的对我说:“自己会python,python有多么多么高级牛掰厉害。”我的第一反应是:“我擦,真的么?这么吊的东西我居然没用过。回去玩玩看,到底好不好用。”而不是说:“擦,又TM给老子装逼,会python了不起么?”如果你真正渴求的是知识or技术,你根本不会在意谁在什么地方用什么语气说的。你在意的只会是知识本身。
想系统学习python,以下是python的一整套课程体系,可以根据体系来学习,事半功倍。
马哥2019教学大纲全面升级,核心技术从“薪”出发
python自动化+Python全栈+爬虫+Ai=全能Python开发-项目实战式教学
阶段一:Python基础及语法
课程内容
Linux基本安装、使用、配置和生产开发环境配置
Python语言概述及发展,搭建Python多系统开发环境
Python内置数据结构、类型、字符及编码,流程控制
列表和元组,集合和字典精讲、文件操作、目录操作、序列化
装饰器、迭代器、描述器、内建函数,模块化、动态模块加载
面向对象和三要素、单双链表实现,运算符重载,魔术方法原理
Python的包管理,打包工具,打包、分发、安装过程
异常的概念和捕获、包管理、常用模块和库使用,插件化开发
并发与并行、同步与异步、线程、进程、队列、IO模型
实战操练:用项目管理git管理代码和持续集成开发
实战操练:用Python开发小应用程序
阶段二:Python网络编程及后台开发
课程内容
同步IO、异步IO和IO多路复用详解
C/S开发和Socket编程,TCP服务器端和客户端开发
TCP、UDP网络编程、异步编程、协程开发
Socketserver模块中类的继承,创建服务器的开发
算法:冒泡排序、选择排序、插入排序、堆排序、树、图
Mysql安装使用,数据类型、DDL语句建库建表
数据库库、表设计思路及数据库开发
使用pymysql驱动,创建ORM,CRUD操作和事务
连接池实现和Python结合的后台开发
key-Value模型与存储体系介绍,多种nosql数据库
实战操练:开发基于C/S架构的web服务器
阶段三:前端开发及全栈可视化
课程内容
Html、Css、bootstrap入门到精通
浏览器引擎,同步、异步网页技术,前端开发技术解析
ES6常量变量、注释、数据类型、let和var
ES6函数及作用域、高阶函数、箭头函数、匿名函数
JS对象模型,字面式声明对象创建,旧式类定义
React比vue技术对比及优劣势解析
React框架介绍,组件、核心实战和应用
HTML5浏览器端多种持久化技术和store.js使用
蚂蚁金服React企业级组件ant design开发
React状态管理库Mobx应用,axios异步HTTP库使用
无状态组件、高阶组件、柯里化、装饰器、带参装饰器
实战:Todolist业务功能开发及可视化
阶段四:Web框架及项目实战
课程内容
web框架Django、Flask、tornado对比
从零开始实现类Flask框架、实现路由、视图等
实现类Flask、正则匹配、webbob库解析、字符串解析等
实现类Flask框架高级路由分组、字典访问属性化等
实现Django开发环境搭建、ORM与数据库开发
实现Django模板语言、应用创建、模型构建
实现Django开发流程、创建应用、注册应用等
RESTful接口开发、React组件、MySQL读写分离等
前后端分离模式MySQL分库分表、Nginx+uWSGI部署
实战:实现多人博客系统项目,采用BS架构实现
实战:分类和标签、转发、搜索、点击量、点赞等特效
阶段五:Python运维自动化开发
课程内容
Devops自动化运维技术框架体系、应用布局
任务调度系统设计,zerorpc及RPC通信实现,Agent封装与实现
mschele通信消息设计和接口API
企业级CMDB系统,虚拟表实现,DDL设计与实现
实战:开源堡垒机jumpserver架构、安全审计、管理
自动化流程平台:流程模板定义、执行引擎实现、手动与自动流程
分布式监控系统设计与实现思路
全面讲解Git版本控制、脚本自动化管理、Git分支合并
实战:基于生产环境持续集成案例Jenkins+gitlab+maven
Python实现执行环境构建及代码测试示例
阶段六:分布式爬虫及数据挖掘
课程内容
爬虫知识体系与相关工具和数据挖掘结合分析
urllib3、requests、lxml等模块企业级使用
requests 模块模拟登录网站,验证,注册
Scrapy框架与Scrapy-Redis,实现分布式爬虫
Selenium模块、PhantomJS模块,实现浏览器爬取数据
selenium实现动态网页的数据抓取、常见的反爬措施
实战:Python 实现新浪微博模拟登陆,并进行数据分析
实战:爬取淘宝、京东、唯品会等电商网站商品
实战:某乎评价抓取和好评人群及价值信息挖掘
实战:提取豆瓣电影信息,分析豆瓣中最新电影的影评
阶段七:人工智能及机器学习
课程内容
人工智能介绍及numpy、pandas学习、matplotlib学习
机器学习基础理论、线性回归算法、逻辑回归算法
KNN算法、决策树算法、K-MEANS算法、神经网络背景概述
单层感知器介绍、单层感知器程序、单层感知器-异或问题
线性神经网,Delta学习规则、线性神经网络解决异或问题
BP神经网络介绍、BP算法推导、BP神经网络-异或问题
sklearn-神经网络-手写数字识别项目
Google神经网络演示平台介绍
Tensorflow安装、Tensorlfow基础知识:图,变量
Tensorflow线、非线性回归及数据分析建模
实战:中国大陆房价预测
实战:汽车车牌识别及人脸识别
阶段八:高薪简历制作和面试技巧
课程内容
以python工程师运维日常工作内容全面介绍工作场景和岗位职责
从简历格式,技能描述,项目案例,个人优势360°打造精致个人简历
国内4大招聘网站简历上传,投递,工作岗位筛选和黄金岗位识别技巧
简历投递时间节点,简历邮件标题,开场白书写规范和技巧
全面讲解技术面试和人事面试的侧重点以及面试回答方向和方法
从着装、自我介绍、职业发展、薪资谈判等全方面培养面试综合能力
讲解薪资和股票期权抉择,以及未来技术发展趋势,和就业公司选择
按照企业面试官标准 ,进行一对一的技术面试和人事面试指导
毕业后可加入价值12800元的马哥往期智囊团和高端人脉圈
终身享受高端独家业内高薪就业机会推荐
C. 怎样用python爬新浪微博大V所有数据
我是个微博重度用户,工作学习之余喜欢刷刷timeline看看有什么新鲜事发生,也因此认识了不少高质量的原创大V,有分享技术资料的,比如好东西传送门;有时不时给你一点人生经验的,比如石康;有高产的段子手,比如银教授;有黄图黄段子小能手,比如阿良哥哥木木萝希木初犬饼…
好吧,我承认,爬黄图黄段子才是我的真实目的,前三个是掩人耳目的…(捂脸,跑开)
另外说点题外话,我一开始想使用Sina Weibo API来获取微博内容,但后来发现新浪微博的API限制实在太多,大家感受一下:
iTerm
小问题:在我的测试中,有的时候会出现图片下载失败的问题,具体原因还不是很清楚,可能是网速问题,因为我宿舍的网速实在太不稳定了,当然也有可能是别的问题,所以在程序根目录下面,我还生成了一个userid_imageurls的文本文件,里面存储了爬取的所有图片的下载链接,如果出现大片的图片下载失败,可以将该链接群一股脑导进迅雷等下载工具进行下载。
另外,我的系统是OSX EI Capitan10.11.2,Python的版本是2.7,依赖库用sudo pip install XXXX就可以安装,具体配置问题可以自行stackoverflow,这里就不展开讲了。
下面我就给出实现代码(严肃脸)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#-*-coding:utf8-*-
import re
import string
import sys
import os
import urllib
import urllib2
from bs4 import BeautifulSoup
import requests
from lxml import etree
reload(sys)
sys.setdefaultencoding('utf-8')
if(len(sys.argv) >=2):
user_id = (int)(sys.argv[1])
else:
user_id = (int)(raw_input(u"请输入user_id: "))
cookie = {"Cookie": "#your cookie"}
url = 'd?filter=1&page=1'%user_id
html = requests.get(url, cookies = cookie).content
selector = etree.HTML(html)
pageNum = (int)(selector.xpath('//input[@name="mp"]')[0].attrib['value'])
result = ""
urllist_set = set()
word_count = 1
image_count = 1
print u'爬虫准备就绪...'
for page in range(1,pageNum+1):
#获取lxml页面
url = 'hu/%d?filter=1&page=%d'%(user_id,page)
lxml = requests.get(url, cookies = cookie).content
#文字爬取
selector = etree.HTML(lxml)
content = selector.xpath('//span[@class="ctt"]')
for each in content:
text = each.xpath('string(.)')
if word_count >= 4:
text = "%d :"%(word_count-3) +text+" "
else :
text = text+" "
result = result + text
word_count += 1
#图片爬取
soup = BeautifulSoup(lxml, "lxml")
urllist = soup.find_all('a',href=re.compile(r'^mblog/oripic',re.I))
first = 0
for imgurl in urllist:
urllist_set.add(requests.get(imgurl['href'], cookies = cookie).url)
image_count +=1
fo = open("/Users/Personals/%s"%user_id, "wb")
fo.write(result)
word_path=os.getcwd()+'/%d'%user_id
print u'文字微博爬取完毕'
link = ""
fo2 = open("/Users/Personals/%s_imageurls"%user_id, "wb")
for eachlink in urllist_set:
link = link + eachlink +" "
fo2.write(link)
print u'图片链接爬取完毕'
if not urllist_set:
print u'该页面中不存在图片'
else:
#下载图片,保存在当前目录的pythonimg文件夹下
image_path=os.getcwd()+'/weibo_image'
if os.path.exists(image_path) is False:
os.mkdir(image_path)
x=1
for imgurl in urllist_set:
temp= image_path + '/%s.jpg' % x
print u'正在下载第%s张图片' % x
try:
urllib.urlretrieve(urllib2.urlopen(imgurl).geturl(),temp)
except:
print u"该图片下载失败:%s"%imgurl
x+=1
print u'原创微博爬取完毕,共%d条,保存路径%s'%(word_count-4,word_path)
print u'微博图片爬取完毕,共%d张,保存路径%s'%(image_count-1,image_path)
D. 如何使用Python编写简单的微博爬虫
py2.x 学一下urllib,urllib2,xpath,正则表达式,bs4的基础知识就可以了。
网上有很多爬虫视频,可以去各个学习网站搜索下。
http://blog.csdn.net/Jason2031/article/details/48698829
E. 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
F. python 新浪微博爬虫,求助
0x00. 起因
因为参加学校大学生创新竞赛,研究有关微博博文表达的情绪,需要大量微博博文,而网上无论是国内的某度、csdn,还是国外谷歌、gayhub、codeproject等都找不到想要的程序,没办法只能自己写一个程序了。
ps.在爬盟找到类似的程序,但是是windows下的,并且闭源,而且最终爬取保存的文件用notepad++打开有很多奇怪的问题,所以放弃了。
0x01. 基础知识
本程序由Python写成,所以基本的python知识是必须的。另外,如果你有一定的计算机网络基础,在前期准备时会有少走很多弯路。
对于爬虫,需要明确几点:
1. 对爬取对象分类,可以分为以下几种:第一种是不需要登录的,比如博主以前练手时爬的中国天气网,这种网页爬取难度较低,建议爬虫新手爬这类网页;第二种是需要登录的,如豆瓣、新浪微博,这些网页爬取难度较高;第三种独立于前两种,你想要的信息一般是动态刷新的,如AJAX或内嵌资源,这种爬虫难度最大,博主也没研究过,在此不细举(据同学说淘宝的商品评论就属于这类)。
2. 如果同一个数据源有多种形式(比如电脑版、手机版、客户端等),优先选取较为“纯净的”展现。比如新浪微博,有网页版,也有手机版,而且手机版可以用电脑浏览器访问,这时我优先选手机版新浪微博。
3. 爬虫一般是将网页下载到本地,再通过某些方式提取出感兴趣的信息。也就是说,爬取网页只完成了一半,你还要将你感兴趣的信息从下载下来的html文件中提取出来。这时就需要一些xml的知识了,在这个项目中,博主用的是XPath提取信息,另外可以使用XQuery等等其他技术,详情请访问w3cschool。
4. 爬虫应该尽量模仿人类,现在网站反爬机制已经比较发达,从验证码到禁IP,爬虫技术和反爬技术可谓不断博弈。
0x02. 开始
决定了爬虫的目标之后,首先应该访问目标网页,明确目标网页属于上述几种爬虫的哪种,另外,记录为了得到感兴趣的信息你需要进行的步骤,如是否需要登录,如果需要登录,是否需要验证码;你要进行哪些操作才能获得希望得到的信息,是否需要提交某些表单;你希望得到的信息所在页面的url有什么规律等等。
以下博文以博主项目为例,该项目爬取特定新浪微博用户从注册至今的所有微博博文和根据关键词爬取100页微博博文(大约1000条)。
0x03. 收集必要信息
首先访问目标网页,发现需要登录,进入登录页面如下新浪微博手机版登录页面
注意url后半段有很多形如”%xx”的转义字符,本文后面将会讲到。
从这个页面可以看到,登录新浪微博手机版需要填写账号、密码和验证码。
这个验证码是近期(本文创作于2016.3.11)才需要提供的,如果不需要提供验证码的话,将有两种方法进行登录。
第一种是填写账号密码之后执行js模拟点击“登录”按钮,博主之前写过一个Java爬虫就是利用这个方法,但是现在找不到工程了,在此不再赘述。
第二种需要一定HTTP基础,提交包含所需信息的HTTP POST请求。我们需要Wireshark 工具来抓取登录微博时我们发出和接收的数据包。如下图我抓取了在登录时发出和接收的数据包Wireshark抓取结果1
在搜索栏提供搜索条件”http”可得到所有http协议数据包,右侧info显示该数据包的缩略信息。图中蓝色一行是POST请求,并且info中有”login”,可以初步判断这个请求是登录时发出的第一个数据包,并且这个180.149.153.4应该是新浪微博手机版登录认证的服务器IP地址,此时我们并没有任何的cookie。
在序号为30是数据包中有一个从该IP发出的HTTP数据包,里面有四个Set-Cookie字段,这些cookie将是我们爬虫的基础。
Wireshark抓取结果2
早在新浪微博服务器反爬机制升级之前,登录是不需要验证码的,通过提交POST请求,可以拿到这些cookie,在项目源码中的TestCookie.py中有示例代码。
ps.如果没有wireshark或者不想这么麻烦的话,可以用浏览器的开发者工具,以chrome为例,在登录前打开开发者工具,转到Network,登录,可以看到发出和接收的数据,登录完成后可以看到cookies,如下图chrome开发者工具
接下来访问所需页面,查看页面url是否有某种规律。由于本项目目标之一是获取某用户的全部微博,所以直接访问该用户的微博页面,以央视新闻 为例。
央视新闻1
图为央视新闻微博第一页,观察该页面的url可以发现,新浪微博手机版的微博页面url组成是 “weibo.cn/(displayID)?page=(pagenum)” 。这将成为我们爬虫拼接url的依据。
接下来查看网页源码,找到我们希望得到的信息的位置。打开浏览器开发者工具,直接定位某条微博,可以发现它的位置,如下所示。
xpath
观察html代码发现,所有的微博都在<div>标签里,并且这个标签里有两个属性,其中class属性为”c”,和一个唯一的id属性值。得到这个信息有助于将所需信息提取出来。
另外,还有一些需要特别注意的因素
* 微博分为原创微博和转发微博
* 按照发布时间至当前时间的差距,在页面上有”MM分钟前”、”今天HH:MM”、”mm月dd日 HH:MM”、”yyyy-mm-dd HH:MM:SS”等多种显示时间的方式* 手机版新浪微博一个页面大约显示10条微博,所以要注意对总共页数进行记录以上几点都是细节,在爬虫和提取的时候需要仔细考虑。
0x04. 编码
1.爬取用户微博
本项目开发语言是Python 2.7,项目中用了一些第三方库,第三方库可以用pip的方法添加。
既然程序自动登录的想法被验证码挡住了,想要访问特定用户微博页面,只能使用者提供cookies了。
首先用到的是Python的request模块,它提供了带cookies的url请求。
import request
print request.get(url, cookies=cookies).content使用这段代码就可以打印带cookies的url请求页面结果。
首先取得该用户微博页面数,通过检查网页源码,查找到表示页数的元素,通过XPath等技术提取出页数。
页数
项目使用lxml模块对html进行XPath提取。
首先导入lxml模块,在项目里只用到了etree,所以from lxml import etree
然后利用下面的方法返回页数
def getpagenum(self):
url = self.geturl(pagenum=1)
html = requests.get(url, cookies=self.cook).content # Visit the first page to get the page number.
selector = etree.HTML(html)
pagenum = selector.xpath('//input[@name="mp"]/@value')[0]
return int(pagenum)
接下来就是不断地拼接url->访问url->下载网页。
需要注意的是,由于新浪反爬机制的存在,同一cookies访问页面过于“频繁”的话会进入类似于“冷却期”,即返回一个无用页面,通过分析该无用页面发现,这个页面在特定的地方会出现特定的信息,通过XPath技术来检查这个特定地方是否出现了特定信息即可判断该页面是否对我们有用。
def ispageneeded(html):
selector = etree.HTML(html)
try:
title = selector.xpath('//title')[0]
except:
return False
return title.text != '微博广场' and title.text != '微博'
如果出现了无用页面,只需简单地重新访问即可,但是通过后期的实验发现,如果长期处于过频访问,返回的页面将全是无用页面,程序也将陷入死循环。为了避免程序陷入死循环,博主设置了尝试次数阈值trycount,超过这个阈值之后方法自动返回。
下面代码片展示了单线程爬虫的方法。
def startcrawling(self, startpage=1, trycount=20):
attempt = 0
try:
os.mkdir(sys.path[0] + '/Weibo_raw/' + self.wanted)except Exception, e:
print str(e)
isdone = False
while not isdone and attempt < trycount:
try:
pagenum = self.getpagenum()
isdone = True
except Exception, e:
attempt += 1
if attempt == trycount:
return False
i = startpage
while i <= pagenum:
attempt = 0
isneeded = False
html = ''
while not isneeded and attempt < trycount:
html = self.getpage(self.geturl(i))
isneeded = self.ispageneeded(html)
if not isneeded:
attempt += 1
if attempt == trycount:
return False
self.savehtml(sys.path[0] + '/Weibo_raw/' + self.wanted + '/' + str(i) + '.txt', html)print str(i) + '/' + str(pagenum - 1)
i += 1
return True
考虑到程序的时间效率,在写好单线程爬虫之后,博主也写了多线程爬虫版本,基本思想是将微博页数除以线程数,如一个微博用户有100页微博,程序开10个线程,那么每个线程只负责10个页面的爬取,其他基本思想跟单线程类似,只需仔细处理边界值即可,在此不再赘述,感兴趣的同学可以直接看代码。另外,由于多线程的效率比较高,并发量特别大,所以服务器很容易就返回无效页面,此时trycount的设置就显得更重要了。博主在写这篇微博的时候,用一个新的cookies,多线程爬取现场测试了一下爬取北京邮电大学的微博,3976条微博全部爬取成功并提取博文,用时仅15s,实际可能跟cookies的新旧程度和网络环境有关,命令行设置如下,命令行意义在项目网址里有说明python main.py _T_WM=xxx; SUHB=xxx; SUB=xxx; gsid_CTandWM=xxx u bupt m 20 20爬取的工作以上基本介绍结束,接下来就是爬虫的第二部分,解析了。由于项目中提供了多线程爬取方法,而多线程一般是无序的,但微博博文是依靠时间排序的,所以项目采用了一种折衷的办法,将下载完成的页面保存在本地文件系统,每个页面以其页号为文件名,待爬取的工作结束后,再遍历文件夹内所有文件并解析。
通过前面的观察,我们已经了解到微博博文存在的标签有什么特点了,利用XPath技术,将这个页面里所有有这个特点的标签全部提取出来已经不是难事了。
在这再次提醒,微博分为转发微博和原创微博、时间表示方式。另外,由于我们的研究课题仅对微博文本感兴趣,所以配图不考虑。
def startparsing(self, parsingtime=datetime.datetime.now()):
basepath = sys.path[0] + '/Weibo_raw/' + self.uidfor filename in os.listdir(basepath):
if filename.startswith('.'):
continue
path = basepath + '/' + filename
f = open(path, 'r')
html = f.read()
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
weibo = Weibo()
weibo.id = item.xpath('./@id')[0]
cmt = item.xpath('./div/span[@class="cmt"]')if len(cmt) != 0:
weibo.isrepost = True
weibo.content = cmt[0].text
else:
weibo.isrepost = False
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
weibo.content += ctt.text
for a in ctt.xpath('./a'):
if a.text is not None:
weibo.content += a.text
if a.tail is not None:
weibo.content += a.tail
if len(cmt) != 0:
reason = cmt[1].text.split(u'\xa0')
if len(reason) != 1:
weibo.repostreason = reason[0]
ct = item.xpath('./div/span[@class="ct"]')[0]
time = ct.text.split(u'\xa0')[0]
weibo.time = self.gettime(self, time, parsingtime)self.weibos.append(weibo.__dict__)
f.close()
方法传递的参数parsingtime的设置初衷是,开发前期爬取和解析可能不是同时进行的(并不是严格的“同时”),微博时间显示是基于访问时间的,比如爬取时间是10:00,这时爬取到一条微博显示是5分钟前发布的,但如果解析时间是10:30,那么解析时间将错误,所以应该讲解析时间设置为10:00。到后期爬虫基本开发完毕,爬取工作和解析工作开始时间差距降低,时间差将是爬取过程时长,基本可以忽略。
解析结果保存在一个列表里,最后将这个列表以json格式保存到文件系统里,删除过渡文件夹,完成。
def save(self):
f = open(sys.path[0] + '/Weibo_parsed/' + self.uid + '.txt', 'w')jsonstr = json.mps(self.weibos, indent=4, ensure_ascii=False)f.write(jsonstr)
f.close()
2.爬取关键词
同样的,收集必要的信息。在微博手机版搜索页面敲入”python”,观察url,研究其规律。虽然第一页并无规律,但是第二页我们发现了规律,而且这个规律可以返回应用于第一页第一页
第二页
应用后第一页
观察url可以发现,对于关键词的搜索,url中的变量只有keyword和page(事实上,hideSearchFrame对我们的搜索结果和爬虫都没有影响),所以在代码中我们就可以对这两个变量进行控制。
另外,如果关键词是中文,那么url就需要对中文字符进行转换,如我们在搜索框敲入”开心”并搜索,发现url如下显示搜索开心
但复制出来却为
http://weibo.cn/search/mblog?hideSearchFrame=&keyword=%E5%BC%80%E5%BF%83&page=1幸好,python的urllib库有qoute方法处理中文转换的功能(如果是英文则不做转换),所以在拼接url前使用这个方法处理一下参数。
另外,考虑到关键词搜索属于数据收集阶段使用的方法,所以在此只提供单线程下载网页,如有多线程需要,大家可以按照多线程爬取用户微博的方法自己改写。最后,对下载下来的网页进行提取并保存(我知道这样的模块设计有点奇怪,打算重(xin)构(qing)时(hao)时再改,就先这样吧)。
def keywordcrawling(self, keyword):
realkeyword = urllib.quote(keyword) # Handle the keyword in Chinese.
try:
os.mkdir(sys.path[0] + '/keywords')
except Exception, e:
print str(e)
weibos = []
try:
highpoints = re.compile(u'[\U00010000-\U0010ffff]') # Handle emoji, but it seems doesn't work.
except re.error:
highpoints = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]')pagenum = 0
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=1' % realkeyword)isneeded = self.ispageneeded(html)
if isneeded:
selector = etree.HTML(html)
try:
pagenum = int(selector.xpath('//input[@name="mp"]/@value')[0])except:
pagenum = 1
for i in range(1, pagenum + 1):
try:
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=%s' % (realkeyword, str(i)))isneeded = self.ispageneeded(html)
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
cmt = item.xpath('./div/span[@class="cmt"]')if (len(cmt)) == 0:
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
text = etree.tostring(ctt, method='text', encoding="unicode")tail = ctt.tail
if text.endswith(tail):
index = -len(tail)
text = text[1:index]
text = highpoints.sub(u'\u25FD', text) # Emoji handling, seems doesn't work.
weibotext = text
weibos.append(weibotext)
print str(i) + '/' + str(pagenum)
except Exception, e:
print str(e)
f = open(sys.path[0] + '/keywords/' + keyword + '.txt', 'w')try:
f.write(json.mps(weibos,indent=4,ensure_ascii=False))except Exception,ex:
print str(ex)
finally:
f.close()
博主之前从未写过任何爬虫程序,为了获取新浪微博博文,博主先后写了3个不同的爬虫程序,有Python,有Java,爬虫不能用了是很正常的,不要气馁,爬虫程序和反爬机制一直都在不断博弈中,道高一尺魔高一丈。
另. 转载请告知博主,如果觉得博主帅的话就可以不用告知了
G. API编程抓取新浪微博、大众点评等方面的数据,编写一套工具,抓取一类数据,用python语言编写爬虫
这个不难实现
但是你如果要可持续的话
这个几乎是不可能实现的
鬼知道人家网页什么时候更新
所以这个自己做起来不会难
更新了自己可以随时维护
H. 如何通过python调用新浪微博的API来爬取数据
1:安装python(这个不多说啦)
2:下载新浪微博SDK的python包,解压为weibopy目录
3:申请AppKey,
流程:
1:通过oAuth认证
按我的理解简化如下:
用户在新浪微博给的页面输入账号密码,然后微博给应用一个PIN码,这样应用通过PIN码才有权限访问该用户的信息,而应用在整个过程中是接触不到密码的,所以用户觉得很安全,后果很满意
2:获得认证之后,就可以使用微博SDK提供的API获得信息啦
3:如果想设计web或者客户端应用的话,那就继续加个GUI好啦(未完成)
代码:
#!/usr/bin/python
import webbrowser
from weibopy.auth import OAuthHandler
from weibopy.api import API
AppKey = '2525355147'
AppSecret = ''
my_auth = OAuthHandler(AppKey , AppSecret)
webbrowser.open(my_auth.get_authorization_url())
verifier = raw_input('PIN: ').strip()
my_auth.get_access_token(verifier)
my_api = API(my_auth)
for comment in my_api.mentions():
object = comment
id = object.__getattribute__("id")
text = object.__getattribute__("text")
print str(id) + " : " + text
I. 如何用python实现爬取微博相册所有图片
三种方案:
1.直接用Python的requests库直接爬取,不过这个需要手动做的事情就比较多了,基本上就看你的Python功力了
2.使用scrapy爬虫框架,这个框架如果不熟悉的话只能自己先去了解下这个框架怎么用
3.使用自动测试框架selemium模拟登录操作,及图片爬取,这个对于大多数会点Python编码的人来说是最好的选择了,他比较直观的能看到怎么去获取数据
每种方案的前提都是你必须有一定基础的编码能力才行,不是随便一个人就能用的