⑴ python中的库都有哪些
标准库
sys
系统相关的参数和函数。 sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等。
os
操作系统接口模块。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等。
re
正则表达式操作。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式,但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习。
math
数学函数库。 math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等。
random
生成伪随机数。
伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数,所以这个过程是可预测的、有规律的,只是循环周期较长,并不能与现实场景相切合。
random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等。望采纳
⑵ python常用库有哪些
python常用的库有sys os 获取系统相关信息
re 正则表达式模块
numpy pandas sklearn 模块用于科学计算
⑶ python常用的数据库有哪些
主流的关系型数据库:
1. MySQL:目前使用最广泛的开源、多平台的关系型数据库,支持事务、符合ACID、支持多数SQL规范。
2. SQL Server:支持事务、符合ACID、支持多数SQL规范,属于商业软件,需要注意版权和licence授权费用。
3. Oracle:支持事务,符合关系型数据库原理,符合ACID,支持多数SQL规范,功能最强大、最复杂、市场占比最高的商业数据库。
4. Postgresql:开源、多平台、关系型数据库,功能最强大的开源数据库,需要Python环境,基于postgresql的time
scaleDB,是目前比较火的时序数据库之一。
非关系型数据库
Redis:开源、Linux平台、key-value键值型nosql数据库,简单稳定,非常主流的、全数据in-momory,定位于快的键值型nosql数据库。
Memcaced:一个开源的、高性能的、具有分布式内存对象的缓存系统,通过它可以减轻数据库负载,加速动态的web应用。
面向文档数据库以文档的形式存储,每个文档是一系列数据项的集合,每个数据项有名称与对应的值,主要产品有:
MongoDB:开源、多平台、文档型nosql数据库,最像关系型数据库,定位于灵活的nosql数据库。适用于网站后台数据库、小文件系统、日志分析系统。
⑷ python常用到哪些库
Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1. NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2. SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3. Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4. Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5. Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6. ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
7. Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8. Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9. pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10. geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11. missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12. Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13. Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14. Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15. Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:
16. MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17. mysqlclient
完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。
18. PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19. SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20. jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21. Mage分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22. Mage的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23. 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24. Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25. Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26. wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27. PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28. PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。
⑸ python库有哪些
Python比较常见的库有:Arrow、Behold、Click、Numba、Matlibplot、Pillow等:
1、Arrow
Python中处理时间的库有datetime,但是它过于简单,使用起来不够方便和智能,而Arrow可以说非常的方便和智能。它可以轻松地定位几个小时之前的时间,可以轻松转换时区时间,对于一个小时前,2个小时之内这样人性化的信息也能够准确解读。
2、Behold
调试程序是每个程序员必备的技能,对于脚本语言,很多人习惯于使用print进行调试,然而对于大项目来说,print的功能还远远不足,我们希望有一个可以轻松使用,调试方便,对变量监视完整,格式已于查看的工具,而Behold就是那个非常好用的调试库。
3、Click
现在几乎所有的框架都有自己的命令行脚手架,Python也不例外,那么如何快速开发出属于自己的命令行程序呢?答案就是使用Python的Click库。Click库对命令行api进行了大量封装,你可以轻松开发出属于自己的CLI命令集。终端的颜色,环境变量信息,通过Click都可以轻松进行获取和改变。
4、Numba
如果你从事数学方面的分析和计算,那么Numba一定是你必不可少的库。Numpy通过将高速C库包装在Python接口中来工作,而Cython使用可选的类型将Python编译为C以提高性能。但是Numba无疑是最方便的,因为它允许使用装饰器选择性地加速Python函数。
5、Matlibplot
做过数据分析,数据可视化的数学学生一定知道matlab这个软件,这是一个收费的数学商用软件,在Python中,Matlibplot就是为了实现这个软件中功能开发的第三方Python库。并且它完全是免费的,很多学校都是用它来进行数学教学和研究的。
6、Pillow
图像处理是任何时候我们都需要关注的问题,平时我们看到很多ps中的神技,比如调整画面颜色,饱和度,调整图像尺寸,裁剪图像等等,这些其实都可以通过Python简单完成,而其中我们需要使用的库就是Pillow。
7、pyqt5
Python是可以开发图形界面程序的。而pyqt就是一款非常好用的第三方GUI库,有了它,你可以轻松开发出跨平台的图形应用程序,其中qtdesigner设计器,更是加速了我们开发图形界面的速度。
除了上述介绍的之外,Python还有很多库,比如:Pandas、NumPy、SciPy、Seaborn、Keras等。
⑹ 最受欢迎的 15 大 Python 库有哪些
Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
将源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。
⑺ Python 常用的标准库以及第三方库有哪些
标准库
Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。
Python标准库的主要功能有:
1.文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能
2.文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能
3.操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志(logging)等功能
4.网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能
5.网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架
6.W3C格式支持,包含HTML,SGML,XML的处理。
7.其它功能,包括国际化支持、数学运算、HASH、Tkinter等
Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖科学计算、Web开发、数据库接口、图形系统多个领域。第三方模块可以使用Python或者C语言编写。SWIG,SIP常用于将C语言编写的程序库转化为Python模块。Boost C++ Libraries包含了一组函式库,Boost.Python,使得以Python或C++编写的程式能互相调用。Python常被用做其他语言与工具之间的“胶水”语言。
着名第三方库
1.Web框架
Django: 开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。
ActiveGrid: 企业级的Web2.0解决方案。
Karrigell: 简单的Web框架,自身包含了Web服务,py脚本引擎和纯python的数据库PyDBLite。
Tornado: 一个轻量级的Web框架,内置非阻塞式服务器,而且速度相当快
webpy: 一个小巧灵活的Web框架,虽然简单但是功能强大。
CherryPy: 基于Python的Web应用程序开发框架。
Pylons: 基于Python的一个极其高效和可靠的Web开发框架。
Zope: 开源的Web应用服务器。
TurboGears: 基于Python的MVC风格的Web应用程序框架。
Twisted: 流行的网络编程库,大型Web框架。
Quixote: Web开发框架。
2.科学计算
Matplotlib: 用Python实现的类matlab的第三方库,用以绘制一些高质量的数学二维图形。
SciPy: 基于Python的matlab实现,旨在实现matlab的所有功能。
NumPy: 基于Python的科学计算第三方库,提供了矩阵,线性代数,傅立叶变换等等的解决方案。
3.GUI
PyGtk: 基于Python的GUI程序开发GTK+库。
PyQt: 用于Python的QT开发库。
WxPython: Python下的GUI编程框架,与MFC的架构相似。
4.其它
BeautifulSoup: 基于Python的HTML/XML解析器,简单易用。
PIL: 基于Python的图像处理库,功能强大,对图形文件的格式支持广泛。
PyGame: 基于Python的多媒体开发和游戏软件开发模块。
Py2exe: 将python脚本转换为windows上可以独立运行的可执行程序。
⑻ 常用的python库有哪些
10个顶级且实用的python库
1、Dash
Dash是比较新的软件包,它是用纯python构建数据可视化app的理想选择,因此特别适合处理数据的任何人。Dash是Flask、Plotly.js和React.js的混合体。
2、Pygame
Pygame是SDL多媒体库的python装饰器,SDL是一个跨平台开发库,旨在提供对以下内容的低级接口:音频、键盘、鼠标、游戏杆、基于OpenGL和Direct3D的图形硬件。
Pygame具有高度的可移植性,几乎可以在所有平台和操作系统上运行。尽管它具有完善的游戏引擎,但您也可以使用此库直接从python脚本播放MP3文件。
3、Pillow
Pillow专门用于处理图像,您可以使用该库创建缩略图,在文件格式之间转换、旋转、应用滤镜、显示图像等等。如果您需要对许多图像执行批量操作,这是理想的选择。
4、Colorama
Colorama允许你在终端使用颜色,非常适合python脚本,文档简短而有趣,可以在Colorama PyPi页面上找到。
5、JmesPath
在python中使用JSON非常容易,因为JSON在python字典上的映射非常好。此外,python带有自己出色的json库,用于解析和创建JSON。对我来说,这是它最好的功能之一,如果我需要使用JSON,可以考虑使用python。
JmesPath使python处理JSON更加容易,它允许您明确地指定如何从JSON文档中提取元素。
6、Requests
Requests建立在世界上下载量最大的python库urllib3上,它令Web请求变得非常简单,功能强大且用途广泛。
Requests可以完成您能想到的所有高级工作,比如:认证,使用cookie,执行POST、PUT、DELETE等,使用自定义证书,使用会话Session、使用代理等。
7、Simplejson
python中的本地json模块有什么问题?没有!实际上,python的json是Simplejson。意思是:python采用了Simplejson的一个版本,并将其合并到每个发行版中,但是使用Simplejson具有一些优点:它适用于更多python版本、它比python随附的版本更新频率更高、它具有用C编写的部分,因此非常快速。
8、Emoji
Emoji库非常意思,但并非每个人都喜欢表情包,分析视角媒体数据时,Emoji包非常有用。
9、Python-dateutil
Python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是:常规的python日期时间功能在哪里结束,而Python-dateutil就出现了。
10、BeautifulSoup
如果您从网站上提取了一些HTML,则需要对其进行解析以获取实际所需的内容。BeautifulSoup是一个python库,用于从HTML和XML文件中提取数据。它提供了导航,搜索和修改解析树的简单方法。它非常强大,即使损坏了,也能够处理各种HTML,这是一个非常强大的功能。
它的一些主要功能:
①BeautifulSoup会自动将传入文档转换为Unicode,将传出文档转换为UTF-8,您无需考虑编码。
②BeautifulSoup位于流行的python解析器的顶部,使您可以尝试不同的解析策略或提高灵活性。