① 北大青鸟java培训:八个最佳的数据中心开源挖掘工具
数据挖掘,又称为资料探勘、数据采矿。
它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤,是一个挖掘和分析大量数据并从中提取信息的过程。
其中一些应用包括市场细分-如识别客户从特定品牌购买特定产品的特征,欺诈检测-识别可能导致在线欺诈的交易模式等。
在本文中,贵阳电脑培训http://www.kmbdqn.cn/整理了进行数据挖掘的8个最佳开源工具。
1、WekaWEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
2、RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。
它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
3、OrangeOrange是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了python以进行脚本开发。
它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评烂卜估和勘探带圆的功能。
其由C++和Python开发,它的图形库是由跨平台的Qt框架开发。
4、KnimeKNIME(KonstanzInformationMiner)是一个用户友好,智能的,并有丰演的开源的数据集成,数据处理,数据分析和数据勘探平台。
5、jHepWorkjHepWork是一套功能完整的面向对象科学数据分析框架。
Jython宏是用来展示一维和二维直方图的数据。
该程序包括许多工具,可以用来和二维三维的科学图形进行互动。
6、ApacheMahoutApacheMahout是ApacheSoftwareFoundation(ASF)开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache在许可下免费使用。
该项目已经发展到了它的最二个年头,目前只有一个公共发行版。
Mahout包含许多实现,包蠢历塌括集群、分类、CP和进化程序。
此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。
7、ELKIELKI(EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures)主要用来聚类和找离群点。
ELKI是类似于weka的数据挖掘平台,用java编写,有GUI图形界面。
可以用来寻找离群点。
② 数据挖掘是什么样的工作啊和java编程有关系吗跪求
两个工作内容联系不大,你是学习java的,我就主要介绍数据挖掘吧
数据挖掘是提取数据、建立模型分析数据、得出结果后与需求部门进行沟通的一个职业。
举个例子:银行的事业部有很多潜在的贷款申请者,事业部向数据挖掘人员提出需求,希望能够分析哪些申请者是优质放贷对象?
数据挖掘人员首先要充分理解事业部的需求,其次要从数据库提取相关数据,提取数据的工作有些时候是由DBA来完成,好了,现在你得到了历史数据,你的任务就是通过历史数据来建立模型,分析具备什么特征的申请者是有能力还贷、不拖欠的,然后用建立好的模型来预测我们刚刚得到的新的一批申请者。
再具体一点:例如,我们通过历史数据发现,年龄大于35岁,的男性,已婚,家庭人口大于3,收入在12000元以上的申请者是理想的放贷对象,那么我们用这个标准来限定新的申请者。
当然我举的例子,为了浅显易懂,是非常简单的示意例子,实际情况要复杂得多,会涉及到个人的贷款历史、信用评估、自然属性、社会属性、资产评估等情况——就是说,数据挖掘人员是要通过数据库中的海量数据,整理出哪些是有用数据,再用这些有用的数据来分析其它部门的问题,帮助他们解决问题,或者为公司的发展提供数据依据
数据挖掘的上升方向是:数据挖掘——产品层——决策层
java是属于开发,比如开发软件、接口、应用程序等,如果一个公司需要开发数据挖掘软件,那么则需要数据挖掘知识+java开发能力,只有在这种时候,才需要两个都具备
但是一般自主开发数据挖掘软件的公司很少,第一需要消耗大量人力物力,第二市场有很多现成的软件,没必要开发。
如果你想从事数据挖掘,你必须具备:
数据挖掘模型、算法的数学知识以及一些数据分析软件(SPSS、SAS、matlab、clementine)
一些数据库相关的知识(oracle、mySQL)
了解市场、其它部门需求
当然这些都是一点一滴积累起来的,没必要一蹴而就,特别是对市场、行业的了解以及对公司其它部门的需求的理解非常重要,这决定了你能否从基础的分析人员上升到产品层、决策层,都是要在实际的工作中积累起来的
至于放弃java什么的,我觉得真的不是放弃,因为你具备了java的基础,一定能派上用场,比如技术型产品经理(face book的扎克伯格和腾讯的马化腾都是技术型产品经理),这种产品经理能够清晰的把握产品的开发过程,还有市场知识。总结起来就是没有什么东西会浪费掉,你学的所有的东西都将在工作中派上用场,只是你遇到的情况不够多不够复杂而已
③ 数据挖掘工程师需要掌握Java到什么程度
对 Java 虚拟机、 Java 并发要有比较深入研究和应用,熟练掌握 Hadoop、 HBase、 Hive、 Kafka、 Storm、 Spark工具,会用 Linux,了解 Scala。如果设计到更高阶的应用,可能就需要会用 Python、 R 语言并且精通算法和数据结构了。
Java熟练的人一般可以负责客户端APP产品中服务器后端的工程设计,架构设计和开发工作,研究业界内的新技术及其应用,解决创新研发中的关键问题和技术难点,依据项目任务计划及时完成软件编码和单元测试项目,按照开发流程编写队友模块的设计文档。与产品经理、测试工程师、其他团队沟通协作,确保产品研发工作的质量和速度,协调或指导团队成员和其它开发人员的工作。熟悉设计模式,熟练掌握面向对象编程和事件驱动编程风格。
关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
④ 数据挖掘为什么要用java或python
主要是方便,python的第三方模块很丰富,而且语法非常简练,自由度很高,python的numpy、scipy、matplotlib模块可以完成所有的spss的功能,而且可以根据自己的需要按照定制的方法对数据进行清洗、归约,需要的情况下还可以跟sql进行连接,做机器学习,很多时候数据是从互联网上用网络爬虫收集的,python有urllib模块,可以很简单的完成这个工作,有些时候爬虫收集数据还要对付某些网站的验证码,python有PIL模块,可以方便的进行识别,如果需要做神经网络、遗传算法,scipy也可以完成这个工作,还有决策树就用if-then这样的代码,做聚类不能局限于某几种聚类,可能要根据实际情况进行调整,k-means聚类、DBSCAN聚类,有时候可能还要综合两种聚类方法对大规模数据进行聚类分析,这些都需要自行编码来完成,此外,基于距离的分类方法,有很多距离表达方式可以选用,比如欧几里得距离、余弦距离、闵可夫斯基距离、城市块距离,虽然并不复杂, 但是用python编程实现很方便,基于内容的分类方法,python有强大的nltk自然语言处理模块,对语言词组进行切分、收集、分类、统计等。
综上,就是非常非常方便,只要你对python足够了解,你发现你可以仅仅使用这一个工具快速实现你的所有想法