㈠ 《python深度学习》pdf下载在线阅读全文,求百度网盘云资源
《Python深度学习》([美]弗朗索瓦·肖莱)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1oiRUoqTw5yUwZAG3fz3UyQ
书名:Python深度学习
豆瓣评分:9.6
作者:[美] 弗朗索瓦•肖莱
出版社:人民邮电出版社
出品方:图灵教育
原作名:Deep Learning with Python
译者:张亮
出版年:2018-8
页数:292
内容简介
本书由Keras之父、现任Google人工智能研究员的弗朗索瓦肖莱(Franois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。
作者简介
弗朗索瓦•肖莱(François Chollet)
Keras之父,TensorFlow机器学习框架贡献者,Kaggle竞赛教练,个人Kaggle竞赛全球排名曾获得第17名。目前任职于Google,从事人工智能研究,尤其关注计算机视觉与机器学习在形式推理方面的应用。
【译者简介】
张亮(hysic)
毕业于北京大学物理学院,爱好机器学习和数据分析的核安全工程师,译有《Python数据处理》《Python机器学习基础教程》等。
㈡ 求电子书:Python编程:从入门到实践
Python电子书免费下载
链接: https://pan..com/s/1GafhvU6eRn8fveB1kf18zw
Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
㈢ 《PyQt5快速开发与实战》epub下载在线阅读全文,求百度网盘云资源
PyQt5快速开发与实战电子书(1117).pdf免费下载
链接:https://pan..com/s/1njNrHzOcAViTSwEjwtYBKg
㈣ 《Python3程序开发指南》pdf下载在线阅读,求百度网盘云资源
《Python 3程序开发指南》([美] 萨默菲尔德(Mark Summerfield))电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1UqWQmiRdjPEqHOKku1n2Cg
书名:Python 3程序开发指南
作者:[美] 萨默菲尔德(Mark Summerfield)
译者:王弘博
出版社:人民邮电出版社
出版年份:2015-2
页数:518
作者简介:
Mark Summerfield,Qtrac公司的所有人,同时还是一位在Python、C++、Qt以及PyQt等领域卓有专长的独立培训专家、顾问、技术编辑与作者。Mark Summerfield撰写的书籍包括《Rapid GUI Programming with Python》以及《Qt:The Definitive Guideto PyQt Programming》(Addison—Wesley,2008),并与Jasmin Blanchette共同编写了《C++GUI Programming with Qt 4》(Addison—Wesley,2006)。作为Trolltech的文档管理者,Mark创立了并负责编辑Trolltech的技术杂志《Qt Quarterly》。
㈤ 《Python程序设计(第3版)》pdf下载在线阅读,求百度网盘云资源
《Python程序设计(第3版)》([美] John Zelle)电子书网盘下载免费在线阅读
链接:https://pan..com/s/18zLT9wJqcc7rnhLHu48O5A
书名:Python程序设计(第3版)
作者:[美] John Zelle
译者:王海鹏
豆瓣评分:7.3
出版社:人民邮电出版社
出版年份:2018-1-12
页数:344
内容简介:
本书是面向大学计算机科学专业第一门程的教材。本书以Python语言为工具,采用相当传统的方法,强调解决问题、设计和编程是计算机科学的核心技能。
全书共13章,包含两个附录。第1章到第5章介绍计算机与程序、编写简单程序、数字计算、对象和图形、字符串处理等基础知识。第6章到第8章介绍函数、判断结构、循环结构和布尔值等话题。第9章到第13章着重介绍一些较为高级的程序设计方法,包括模拟与设计、类、数据集合、面向对象设计、算法设计与递归等。附录部分给出了Python快速参考和术语表。每一章的末尾配有丰富的练习,包括复习问题、讨论和编程联系等多种形式,帮助读者巩固该章的知识和技能。
㈥ 《Python编程实战运用设计模式、并发和程序库创建高质量程序》pdf下载在线阅读,求百度网盘云资源
《Python编程实战》([美] Mark Summerfield)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:Python编程实战
作者:[美] Mark Summerfield
译者:爱飞翔
豆瓣评分:7.6
出版社:机械工业出版社
出版年份:2014-8
页数:252
内容简介:《python编程实战:运用设计模式、并发和程序库创建高质量程序》由python开发者社区知名技术专家mark summerfield亲笔撰写,全球资深python专家doug hellmann作序鼎力推荐,是python领域最有影响力的着作之一。书中通过大量实用的范例代码和三个完整的案例研究,全面而系统地讲解了如何运用设计模式来规划代码结构,如何通过并发与cython等技术提升代码执行速度,以及如何利用各种python程序库来快速开发具体的应用程序和游戏。
《python编程实战:运用设计模式、并发和程序库创建高质量程序》共8章:第1~3章分别介绍了python的几种设计模式(创建型设计模式、结构型设计模式和行为型设计模式);第4章和第5章详细讲解了python的高级并发技术以及cython的用法;第6章具体介绍了python的高级网络编程;第7章阐释了如何用tkinter开发图形用户界面;第8章讲解了如何用opengl绘制3d图形。
作者简介:Mark Summerfield Qtrac公司创始人,独立的培训讲师、顾问、技术编辑,Go、Python、C++、Qt和PyQt方面的技术作家。他撰写了大量畅销图书,包括《Rapid GUI Programming with Python and Qt》、《C++ GUI Programming with Qt 4,Second Edition》(与Jasmin Blanchette合着)、《Programming in Python 3,Second Edition》、《Advanced Qt Programming》和《Programming in Go》等。
㈦ 《Python机器学习经典实例》pdf下载在线阅读全文,求百度网盘云资源
《Python机器学习经典实例》([美]PrateekJoshi)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1mSmaGkPHVk5FoZT6kiCU-w
书名:Python机器学习经典实例
作者:[美] Prateek Joshi
出版社:人民邮电出版社
译者:陶俊杰/陈小莉
出版年:2017-8
页数:264
内容简介
在如今这个处处以数据驱动的世界中,机器学习正变得越来越大众化。它已经被广泛地应用于不同领域,如搜索引擎、机器人、无人驾驶汽车等。本书首先通过实用的案例介绍机器学习的基础知识,然后介绍一些稍微复杂的机器学习算法,例如支持向量机、极端随机森林、隐马尔可夫模型、条件随机场、深度神经网络,等等。本书是为想用机器学习算法开发应用程序的Python 程序员准备的。它适合Python 初学者阅读,不过熟悉Python 编程方法对体验示例代码大有裨益。
作者简介
Prateek Joshi人工智能专家,重点关注基于内容的分析和深度学习,曾在英伟达、微软研究院、高通公司以及硅谷的几家早期创业公司任职。
㈧ python数据分析与应用-Python数据分析与应用 PDF 内部全资料版
给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。
内容介绍
目录
第1章Python数据分析概述1
任务1.1认识数据分析1
1.1.1掌握数据分析的概念2
1.1.2掌握数据分析的流程2
1.1.3了解数据分析应用场景4
任务1.2熟悉Python数据分析的工具5
1.2.1了解数据分析常用工具6
1.2.2了解Python数据分析的优势7
1.2.3了解Python数据分析常用类库7
任务1.3安装Python的Anaconda发行版9
1.3.1了解Python的Anaconda发行版9
1.3.2在Windows系统中安装Anaconda9
1.3.3在Linux系统中安装Anaconda12
任务1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 级功能16
小结19
课后习题19
第2章NumPy数值计算基础21
任务2.1掌握NumPy数组对象ndarray21
2.1.1创建数组对象21
2.1.2生成随机数27
2.1.3通过索引访问数组29
2.1.4变换数组的形态31
任务2.2掌握NumPy矩阵与通用函数34
2.2.1创建NumPy矩阵34
2.2.2掌握ufunc函数37
任务2.3利用NumPy进行统计分析41
2.3.1读/写文件41
2.3.2使用函数进行简单的统计分析44
2.3.3任务实现48
小结50
实训50
实训1创建数组并进行运算50
实训2创建一个国际象棋的棋盘50
课后习题51
第3章Matplotlib数据可视化基础52
任务3.1掌握绘图基础语法与常用参数52
3.1.1掌握pyplot基础语法53
3.1.2设置pyplot的动态rc参数56
任务3.2分析特征间的关系59
3.2.1绘制散点图59
3.2.2绘制折线图62
3.2.3任务实现65
任务3.3分析特征内部数据分布与分散状况68
3.3.1绘制直方图68
3.3.2绘制饼图70
3.3.3绘制箱线图71
3.3.4任务实现73
小结77
实训78
实训1分析1996 2015年人口数据特征间的关系78
实训2分析1996 2015年人口数据各个特征的分布与分散状况78
课后习题79
第4章pandas统计分析基础80
任务4.1读/写不同数据源的数据80
4.1.1读/写数据库数据80
4.1.2读/写文本文件83
4.1.3读/写Excel文件87
4.1.4任务实现88
任务4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用属性89
4.2.2查改增删DataFrame数据91
4.2.3描述分析DataFrame数据101
4.2.4任务实现104
任务4.3转换与处理时间序列数据107
4.3.1转换字符串时间为标准时间107
4.3.2提取时间序列数据信息109
4.3.3加减时间数据110
4.3.4任务实现111
任务4.4使用分组聚合进行组内计算113
4.4.1使用groupby方法拆分数据114
4.4.2使用agg方法聚合数据116
4.4.3使用apply方法聚合数据119
4.4.4使用transform方法聚合数据121
4.4.5任务实现121
任务4.5创建透视表与交叉表123
4.5.1使用pivot_table函数创建透视表123
4.5.2使用crosstab函数创建交叉表127
4.5.3任务实现128
小结130
实训130
实训1读取并查看P2P网络贷款数据主表的基本信息130
实训2提取用户信息更新表和登录信息表的时间信息130
实训3使用分组聚合方法进一步分析用户信息更新表和登录信息表131
实训4对用户信息更新表和登录信息表进行长宽表转换131
课后习题131
第5章使用pandas进行数据预处理133
任务5.1合并数据133
5.1.1堆叠合并数据133
5.1.2主键合并数据136
5.1.3重叠合并数据139
5.1.4任务实现140
任务5.2清洗数据141
5.2.1检测与处理重复值141
5.2.2检测与处理缺失值146
5.2.3检测与处理异常值149
5.2.4任务实现152
任务5.3标准化数据154
5.3.1离差标准化数据154
5.3.2标准差标准化数据155
5.3.3小数定标标准化数据156
5.3.4任务实现157
任务5.4转换数据158
5.4.1哑变量处理类别型数据158
5.4.2离散化连续型数据160
5.4.3任务实现162
小结163
实训164
实训1插补用户用电量数据缺失值164
实训2合并线损、用电量趋势与线路告警数据164
实训3标准化建模专家样本数据164
课后习题165
第6章使用scikit-learn构建模型167
任务6.1使用sklearn转换器处理数据167
6.1.1加载datasets模块中的数据集167
6.1.2将数据集划分为训练集和测试集170
6.1.3使用sklearn转换器进行数据预处理与降维172
6.1.4任务实现174
任务6.2构建并评价聚类模型176
6.2.1使用sklearn估计器构建聚类模型176
6.2.2评价聚类模型179
6.2.3任务实现182
任务6.3构建并评价分类模型183
6.3.1使用sklearn估计器构建分类模型183
6.3.2评价分类模型186
6.3.3任务实现188
任务6.4构建并评价回归模型190
6.4.1使用sklearn估计器构建线性回归模型190
6.4.2评价回归模型193
6.4.3任务实现194
小结196
实训196
实训1使用sklearn处理wine和wine_quality数据集196
实训2构建基于wine数据集的K-Means聚类模型196
实训3构建基于wine数据集的SVM分类模型197
实训4构建基于wine_quality数据集的回归模型197
课后习题198
第7章航空公司客户价值分析199
任务7.1了解航空公司现状与客户价值分析199
7.1.1了解航空公司现状200
7.1.2认识客户价值分析201
7.1.3熟悉航空客户价值分析的步骤与流程201
任务7.2预处理航空客户数据202
7.2.1处理数据缺失值与异常值202
7.2.2构建航空客户价值分析关键特征202
7.2.3标准化LRFMC模型的5个特征206
7.2.4任务实现207
任务7.3使用K-Means算法进行客户分群209
7.3.1了解K-Means聚类算法209
7.3.2分析聚类结果210
7.3.3模型应用213
7.3.4任务实现214
小结215
实训215
实训1处理信用卡数据异常值215
实训2构造信用卡客户风险评价关键特征217
实训3构建K-Means聚类模型218
课后习题218
第8章财政收入预测分析220
任务8.1了解财政收入预测的背景与方法220
8.1.1分析财政收入预测背景220
8.1.2了解财政收入预测的方法222
8.1.3熟悉财政收入预测的步骤与流程223
任务8.2分析财政收入数据特征的相关性223
8.2.1了解相关性分析223
8.2.2分析计算结果224
8.2.3任务实现225
任务8.3使用Lasso回归选取财政收入预测的关键特征225
8.3.1了解Lasso回归方法226
8.3.2分析Lasso回归结果227
8.3.3任务实现227
任务8.4使用灰色预测和SVR构建财政收入预测模型228
8.4.1了解灰色预测算法228
8.4.2了解SVR算法229
8.4.3分析预测结果232
8.4.4任务实现234
小结236
实训236
实训1求取企业所得税各特征间的相关系数236
实训2选取企业所得税预测关键特征237
实训3构建企业所得税预测模型237
课后习题237
第9章家用热水器用户行为分析与事件识别239
任务9.1了解家用热水器用户行为分析的背景与步骤239
9.1.1分析家用热水器行业现状240
9.1.2了解热水器采集数据基本情况240
9.1.3熟悉家用热水器用户行为分析的步骤与流程241
任务9.2预处理热水器用户用水数据242
9.2.1删除冗余特征242
9.2.2划分用水事件243
9.2.3确定单次用水事件时长阈值244
9.2.4任务实现246
任务9.3构建用水行为特征并筛选用水事件247
9.3.1构建用水时长与频率特征248
9.3.2构建用水量与波动特征249
9.3.3筛选候选洗浴事件250
9.3.4任务实现251
任务9.4构建行为事件分析的BP神经网络模型255
9.4.1了解BP神经网络算法原理255
9.4.2构建模型259
9.4.3评估模型260
9.4.4任务实现260
小结263
实训263
实训1清洗运营商客户数据263
实训2筛选客户运营商数据264
实训3构建神经网络预测模型265
课后习题265
附录A267
附录B270
参考文献295
学习笔记
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……
本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……
Python数据分析之双色球基于线性回归算法预测下期中奖结果示例
本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……
以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。
注·获取方式:私信(666)
㈨ python三本经典书籍都是什么
python三本经典书籍有:《深度学习入门:基于Python的理论与实现》,《Python高性能(第2版)》,《Python科学计算最佳实践:SciPy指南》。
1、《深度学习入门:基于Python的理论与实现》
本书深入浅出地剖析了深度学习的原理和相关技术,使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。
本书结合大量代码实例,详尽展示了SciPy的强大科学计算能力,包括用NumPy和SciPy进行分位数标准化,用Ndimage实现图像区域网络、频率与快速傅里叶变换,用稀疏坐标矩阵实现列联表、SciPy中的线性代数、SciPy中的函数优化等。
Python标准库的主要功能有:
文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能。
文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能。
操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、写日记(logging)等功能。