导航:首页 > 编程语言 > githubpythonapi

githubpythonapi

发布时间:2023-06-09 16:36:22

‘壹’ 13个最常用的python深度学习库介绍

13个最常用的Python深度学习库介绍
如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助。
在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库。
这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表。
这其中的一些库我比别人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras、deepy和Blocks等)。
另外的我只是在一些特别的任务中用过(比如nolearn和他们的Deep Belief Network implementation)。
这篇文章的目的是向你介绍这些库。我建议你认真了解这里的每一个库,然后在某个具体工作情境中你就可以确定一个最适用的库。
我想再次重申,这份名单并不详尽。此外,由于我是计算机视觉研究人员并长期活跃在这个领域,对卷积神经网络(细胞神经网络)方面的库会关注更多。
我把这个深度学习库的列表分为三个部分。
第一部分是比较流行的库,你可能已经很熟悉了。对于这些库,我提供了一个通俗的、高层次的概述。然后,针对每个库我详细解说了我的喜欢之处和不喜欢之处,并列举了一些适当的应用案例。
第二部分进入到我个人最喜欢的深度学习库,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最后,我对第一部分中不经常使用的库做了一个“福利”板块,你或许还会从中发现有用的或者是在第二板块中我还没有尝试过但看起来很有趣的库。
接下来就让我们继续探索。
针对初学者:
Caffe
提到“深度学习库”就不可能不说到Caffe。事实上,自从你打开这个页面学习深度学习库,我就敢打保票你肯定听说Caffe。
那么,究竟Caffe是什么呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度学习框架。它是模块化的,速度极快。而且被应用于学术界和产业界的start-of-the-art应用程序中。
事实上,如果你去翻阅最新的深度学习出版物(也提供源代码),你就很可能会在它们相关的GitHub库中找到Caffe模型。
虽然Caffe本身并不是一个Python库,但它提供绑定到Python上的编程语言。我们通常在新领域开拓网络的时候使用这些绑定。
我把Caffe放在这个列表的原因是它几乎被应用在各个方面。你可以在一个空白文档里定义你的模型架构和解决方案,建立一个JSON文件类型的.prototxt配置文件。Caffe二进制文件提取这些.prototxt文件并培训你的网络。Caffe完成培训之后,你可以把你的网络和经过分类的新图像通过Caffe二进制文件,更好的就直接通过Python或MATLAB的API。
虽然我很喜欢Caffe的性能(它每天可以在K40 GPU上处理60万张图片),但相比之下我更喜欢Keras和mxnet。
主要的原因是,在.prototxt文件内部构建架构可能会变得相当乏味和无聊。更重要的是, Caffe不能用编程方式调整超参数!由于这两个原因,在基于Python的API中我倾向于对允许我实现终端到终端联播网的库倾斜(包括交叉验证和调整超参数)。
Theano
在最开始我想说Theano是美丽的。如果没有Theano,我们根本不会达到现有的深度学习库的数量(特别是在Python)。同样的,如果没有numpy,我们就不会有SciPy、scikit-learn和 scikit-image,,同样可以说是关于Theano和深度学习更高级别的抽象。
非常核心的是,Theano是一个Python库,用来定义、优化和评估涉及多维数组的数学表达式。 Theano通过与numpy的紧密集成,透明地使用GPU来完成这些工作。
虽然可以利用Theano建立深度学习网络,但我倾向于认为Theano是神经网络的基石,同样的numpy是作为科学计算的基石。事实上,大多数我在文章中提到的库都是围绕着Theano,使自己变得更加便利。
不要误会我的意思,我爱Theano,我只是不喜欢用Theano编写代码。
在Theano建设卷积神经网络就像只用本机Python中的numpy写一个定制的支持向量机(SVM),当然这个对比并不是很完美。
你可以做到吗?
当然可以。
它值得花费您的时间和精力吗?
嗯,也许吧。这取决于你是否想摆脱低级别或你的应用是否需要。
就个人而言,我宁愿使用像Keras这样的库,它把Theano包装成更有人性化的API,同样的方式,scikit-learn使机器学习算法工作变得更加容易。
TensorFlow
与Theano类似,TensorFlow是使用数据流图进行数值计算的开源库(这是所有神经网络固有的特征)。最初由谷歌的机器智能研究机构内的Google Brain Team研究人员开发,此后库一直开源,并提供给公众。
相比于Theano ,TensorFlow的主要优点是分布式计算,特别是在多GPU的环境中(虽然这是Theano正在攻克的项目)。
除了用TensorFlow而不是Theano替换Keras后端,对于TensorFlow库我并没有太多的经验。然而在接下来的几个月里,我希望这有所改变。
Lasagne
Lasagne是Theano中用于构建和训练网络的轻量级库。这里的关键词是轻量级的,也就意味着它不是一个像Keras一样围绕着Theano的重包装的库。虽然这会导致你的代码更加繁琐,但它会把你从各种限制中解脱出来,同时还可以让您根据Theano进行模块化的构建。
简而言之:Lasagne的功能是Theano的低级编程和Keras的高级抽象之间的一个折中。
我最喜欢的:
Keras
如果我必须选出一个最喜欢的深度学习Python库,我将很难在Keras和mxnet中做出抉择——但最后,我想我会选Keras。
说真的,Keras的好处我说都说不完。
Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。
在Keras中架构网络设计是十分轻松自然的。它包括一些state-of-the-art中针对优化(Adam,RMSProp)、标准化(BatchNorm)和激活层(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷积神经网络,这也是我十分需要的。无论它是有意还是无意的,我觉得从计算机视觉的角度来看这是非常有价值的。
更重要的是,你既可以轻松地构建基于序列的网络(其中输入线性流经网络)又可以创建基于图形的网络(输入可以“跳过”某些层直接和后面对接)。这使得创建像GoogLeNet和SqueezeNet这样复杂的网络结构变得容易得多。
我认为Keras唯一的问题是它不支持多GPU环境中并行地训练网络。这可能会也可能不会成为你的大忌。
如果我想尽快地训练网络,那么我可能会使用mxnet。但是如果我需要调整超参数,我就会用Keras设置四个独立的实验(分别在我的Titan X GPUs上运行)并评估结果。
mxnet
我第二喜欢的深度学习Python库无疑就是mxnet(重点也是训练图像分类网络)。虽然在mxnet中站立一个网络可能需要较多的代码,但它会提供给你惊人数量的语言绑定(C ++、Python、R、JavaScript等)。
Mxnet库真正出色的是分布式计算,它支持在多个CPU / GPU机训练你的网络,甚至可以在AWS、Azure以及YARN集群。
它确实需要更多的代码来设立一个实验并在mxnet上运行(与Keras相比),但如果你需要跨多个GPU或系统分配训练,我推荐mxnet。
sklearn-theano
有时候你并不需要终端到终端的培养一个卷积神经网络。相反,你需要把CNN看作一个特征提取器。当你没有足够的数据来从头培养一个完整的CNN时它就会变得特别有用。仅仅需要把你的输入图像放入流行的预先训练架构,如OverFeat、AlexNet、VGGNet或GoogLeNet,然后从FC层提取特征(或任何您要使用的层)。
总之,这就是sklearn-theano的功能所在。你不能用它从头到尾的训练一个模型,但它的神奇之处就是可以把网络作为特征提取器。当需要评估一个特定的问题是否适合使用深度学习来解决时,我倾向于使用这个库作为我的第一手判断。
nolearn
我在PyImageSearch博客上用过几次nolearn,主要是在我的MacBook Pro上进行一些初步的GPU实验和在Amazon EC2 GPU实例中进行深度学习。
Keras把 Theano和TensorFlow包装成了更具人性化的API,而nolearn也为Lasagne做了相同的事。此外,nolearn中所有的代码都是与scikit-learn兼容的,这对我来说绝对是个超级的福利。
我个人不使用nolearn做卷积神经网络(CNNs),但你当然也可以用(我更喜欢用Keras和mxnet来做CNNs)。我主要用nolearn来制作Deep Belief Networks (DBNs)。
DIGITS
DIGITS并不是一个真正的深度学习库(虽然它是用Python写的)。DIGITS(深度学习GPU培训系统)实际上是用于培训Caffe深度学习模式的web应用程序(虽然我认为你可以破解源代码然后使用Caffe以外其他的后端进行工作,但这听起来就像一场噩梦)。
如果你曾经用过Caffe,那么你就会知道通过它的终端来定义.prototxt文件、生成图像数据、运行网络并监管你的网络训练是相当繁琐的。 DIGITS旨在通过让你在浏览器中执行这些任务来解决这个问题。
此外,DIGITS的用户界面非常出色,它可以为你提供有价值的统计数据和图表作为你的模型训练。另外,你可以通过各种输入轻松地可视化网络中的激活层。最后,如果您想测试一个特定的图像,您可以把图片上传到你的DIGITS服务器或进入图片的URL,然后你的Caffe模型将会自动分类图像并把结果显示在浏览器中。干净利落!
Blocks
说实话,虽然我一直想尝试,但截至目前我的确从来没用过Blocks(这也是我把它包括在这个列表里的原因)。就像许多个在这个列表中的其他库一样,Blocks建立在Theano之上,呈现出一个用户友好型的API。
deepy
如果让你猜deepy是围绕哪个库建立的,你会猜什么?
没错,就是Theano。
我记得在前一段时间用过deepy(做了初始提交),但在接下里的大概6-8个月我都没有碰它了。我打算在接下来的博客文章里再尝试一下。
pylearn2
虽然我从没有主动地使用pylearn2,但由于历史原因,我觉得很有必要把它包括在这个列表里。 Pylearn2不仅仅是一般的机器学习库(地位类似于scikit-learn),也包含了深度学习算法的实现。
对于pylearn2我最大的担忧就是(在撰写本文时),它没有一个活跃的开发者。正因为如此,相比于像Keras和mxnet这样的有积极维护的库,推荐pylearn2我还有些犹豫。
Deeplearning4j
这本应是一个基于Python的列表,但我想我会把Deeplearning4j包括在这里,主要是出于对他们所做事迹的无比崇敬——Deeplearning4j为JVM建立了一个开源的、分布式的深度学习库。
如果您在企业工作,你可能会有一个塞满了用过的Hadoop和MapRece服务器的储存器。也许这些你还在用,也许早就不用了。
你怎样才能把这些相同的服务器应用到深度学习里?
事实证明是可以的——你只需要Deeplearning4j。
总计
以上就是本文关于13个最常用的Python深度学习库介绍的全部内容

‘贰’ python 怎么提供api接口

python有个etcd的库,可以网上搜下看下这个库的使用以及它开发的api接口,
不过之前go使用etcd的时候,是调用etcd本身的rest api,没有使用第三方的etcd的库
etcd的api文档github上有的,搜下这个coreos/etcd
你可以选择自己喜欢的方式

‘叁’ 如何通过python调用新浪微博的API

1.下载SDK

使用python调用API的话,首先要去下一个Python的SDK,sinaweibopy

连接地址在此: http://michaelliao.github.com/sinaweibopy/

可以使用pip很快的导入,github连接里的wiki也有入门的使用方法,很容易看懂。

2.理解新浪微博的授权机制

在调用API之前,首先要搞懂什么叫OAuth 2,即新浪微博的授权机制,

连接在此: http://open.weibo.com/wiki/%E6%8E%88%E6%9D%83%E6%9C%BA%E5%88%B6%E8%AF%B4%E6%98%8E

3.在新浪微博注册应用

每个人都可以通过新浪微博开发者平台注册自己的应用,我注册的是站内应用。注册后会为每个应用分配唯一的app key 和 app secret,这在上文提到的授权机制中需要用到,相当与每个应用的标示吧。

至此,我们可以尝试写代码调用新浪微博的API啦。

4.简单的调用API实例

参考了往上很多资料和文档,写了一个简单的调用过程。

# _*_ coding: utf-8 _*_
from weibo import APIClient
import webbrowser
APP_KEY = ”
APP_SECRET = ”
CALLBACK_URL = ”
#这个是设置回调地址,必须与那个”高级信息“里的一致
client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
url = client.get_authorize_url()
# TODO: redirect to url
#print url
webbrowser.open_new(url)
# 获取URL参数code:
code = ‘‘
client = APIClient(app_key=APP_KEY, app_secret=APP_SECRET, redirect_uri=CALLBACK_URL)
r = client.request_access_token(code)
access_token = r.access_token # 新浪返回的token,类似abc123xyz456
expires_in = r.expires_in # token过期的UNIX时间:http://zh.wikipedia.org/wiki/UNIX%E6%97%B6%E9%97%B4
# TODO: 在此可保存access token
client.set_access_token(access_token, expires_in)

print client.friendships.friends.bilateral.ids.get(uid = 12345678)

通过以上的代码,我实现了调用相互关注API的调用,即查找与某个id的用户相互关注的人的列表。

其中,APP_KEY和APP_SECRET就是前文中分配给每个应用的信息,回调地址在每个应用的高级信息中可以看到,需要自己设置,不过随便设置一下就好

比较恶心的是code的获取,我一开始看sinaweibopy的文档的时候也没弄懂是什么意思,如上面的代码所示,url得到的是一个授权的网址,我们通过

webbrowser.open_new(url)
这行代码打开浏览器跳转到授权的界面,然后观察所在界面的网址,会显示大概如下一样的格式:

http://apps.weibo.com/sayarywei?code=

看到了吗?
问号后面有一个code=……的一个东西,把等号后面的字符串拷贝下来赋给code就可以了,但是每次运行程序是code不是一成不变的,也就是说每次都
要有这么一个手动获取的过程,我觉得很麻烦,以后自己再研究一下,实现自动获取code就好了。如果能有哪位大神告诉我,感激不尽~

好了,得到正确的code之后就可以完成授权认证,也就可以调用微博的API啦,至于如何在Python下调用,我拷贝一下sinaweibopy上的介绍:

首先查看新浪微博API文档,例如:

API:statuses/user_timeline

请求格式:GET

请求参数:

source:string,采用OAuth授权方式不需要此参数,其他授权方式为必填参数,数值为应用的AppKey?。

access_token:string,采用OAuth授权方式为必填参数,其他授权方式不需要此参数,OAuth授权后获得。

uid:int64,需要查询的用户ID。

screen_name:string,需要查询的用户昵称。

(其它可选参数略)

调用方法:将API的“/”变为“.”,根据请求格式是GET或POST,调用get ()或post()并传入关键字参数,但不包括source和access_token参数:

r = client.statuses.user_timeline.get(uid=123456)
for st in r.statuses:
print st.text

若为POST调用,则示例代码如下:

r = client.statuses.update.post(status=u'测试OAuth 2.0发微博')

若需要上传文件,传入file-like object参数,示例代码如下:

f = open('/Users/michael/test.png', 'rb')
r = client.statuses.upload.post(status=u'测试OAuth 2.0带图片发微博', pic=f)
f.close() # APIClient不会自动关闭文件,需要手动关闭

请注意:上传的文件必须是file-like object,不能是str,因为无法区分一个str是文件还是字段。可以通过StringIO把一个str包装成file-like object。

‘肆’ 如何用python开发移动App后台需要掌握哪些技术

1、如果使用python语言,需要学习哪些知识?
python作为一门简单明了的语言,非常容易上手,语言层面不会太复杂,稍微有点难度的顶多就是装饰器、元类和少量函数式编程内容。要说学习的话,我觉得更多是一些编程方面通用的东西,比如:数据结构和算法、设计模式、操作系统、计算机网络之类的

2、选择什么样的python框架开发,这个框架的优势?
tornado,因为非阻塞io的原因,性能非常高,特别适合写后端API(App的后端应该都是rest风格的api),而且成熟稳定

3、如何部署服务器?本地服务器调试,以及公网服务器部署?
这个一两句说不清楚,涉及到运维、测试、开发诸多方面, 部署和测试推荐几个包:fabric、nose、unittest(python自带),版本管理推荐git,持续集成推荐使用docker+jenkins

4、如果使用python框架开发移动后台服务,在开发源码内使用哪种框架?mvc还是其它的,比如我返回json数据,每次json对象最外层有一些相同的东西,该如何处理?
MVC什么的,一般的框架都差不多的,tornado也是支持的,返回json有相同的东西,写个修饰器就完了

5、python的后台服务最大能支持多大的pv量会严重影响用户体验性能?
youtube、reddit、豆瓣、知乎这样的大流量网站都是python写的,觉得你的App的规模不太可能遇到性能问题,即使有也应该不是python的问题,而是任何语言都会有问题。毕竟web后端不是计算密集型,而是io密集型的,python和其他语言的区别不会太大吧,大量的pv是可以靠堆服务器堆出来的,如果是计算量比较大的任务,你可以考虑用c或c++写

6、如何兼顾 网页前端以及移动端 开发的后台?
用python写的API,网页和移动端都是可以调用啊,让前端学学React,就可以轻松解决前后端分离这个问题(PS: facebook 就是后端php + 前端React,淘宝也有在用nodejs做前后端分离)

7、有没用相关的案例,即用python开发的移动后台?有没有该问题的开源项目?
这个应该比较少,App后端开源的不常见,而且大部分是rest风格的api,很多时候会涉及到自身的业务和敏感信息应该不会开源的吧(又不是bbs或者博客程序)

‘伍’ api接口和python库的区别是什么

API
接口属于一种操作系统或程序接口,而后两者都属于直接用户接口。
有时公司会将
API
作为其公共开放系统。也就是说,公司制定自己的系统接口标准,当需要执行系统整合、自定义和程序应用等操作时,公司所有成员都可以通过该接口标准调用源代码,该接口标准被称之为开放式
API。

‘陆’ 从github下载到本地的代码该如何运行,代码包含多个文件夹,每个文件夹中有多个python文件

uspto-opendata-python是用于访问USPTO开放数据API的客户端库,需要使用pip install uspto-opendata-python来进行安装,这样在python中就可以调用这个库了。

‘柒’ 谁用过python中的第三方库face recognition

简介
该库可以通过python或者命令行即可实现人脸识别的功能。使用dlib深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild)上的准确率为99.38%。
在github上有相关的链接和API文档。

在下方为提供的一些相关源码或是文档。当前库的版本是v0.2.0,点击docs可以查看API文档,我们可以查看一些函数相关的说明等。

安装配置
安装配置很简单,按照github上的说明一步一步来就可以了。
根据你的python版本输入指令:
pip install face_recognition11

或者
pip3 install face_recognition11

正常来说,安装过程中会出错,会在安装dlib时出错,可能报错也可能会卡在那不动。因为pip在编译dlib时会出错,所以我们需要手动编译dlib再进行安装。

按照它给出的解决办法:
1、先下载下来dlib的源码。
git clone

2、编译dlib。
cd dlib
mkdir build
cd build
cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1
cmake --build1234512345

3、编译并安装python的拓展包。
cd ..
python3 setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA1212

注意:这个安装步骤是默认认为没有GPU的,所以不支持cuda。
在自己手动编译了dlib后,我们可以在python中import dlib了。
之后再重新安装,就可以配置成功了。
根据你的python版本输入指令:
pip install face_recognition11

或者
pip3 install face_recognition11

安装成功之后,我们可以在python中正常import face_recognition了。

编写人脸识别程序
编写py文件:
# -*- coding: utf-8 -*-
#

# 检测人脸
import face_recognition
import cv2

# 读取图片并识别人脸
img = face_recognition.load_image_file("silicon_valley.jpg")
face_locations = face_recognition.face_locations(img)
print face_locations

# 调用opencv函数显示图片
img = cv2.imread("silicon_valley.jpg")
cv2.namedWindow("原图")
cv2.imshow("原图", img)

# 遍历每个人脸,并标注
faceNum = len(face_locations)
for i in range(0, faceNum):
top = face_locations[i][0]
right = face_locations[i][1]
bottom = face_locations[i][2]
left = face_locations[i][3]

start = (left, top)
end = (right, bottom)

color = (55,255,155)
thickness = 3
cv2.rectangle(img, start, end, color, thickness)

# 显示识别结果
cv2.namedWindow("识别")
cv2.imshow("识别", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

注意:这里使用了python-OpenCV,一定要配置好了opencv才能运行成功。
运行结果:
程序会读取当前目录下指定的图片,然后识别其中的人脸,并标注每个人脸。
(使用图片来自美剧硅谷)

编写人脸比对程序
首先,我在目录下放了几张图片:

这里用到的是一张乔布斯的照片和一张奥巴马的照片,和一张未知的照片。
编写程序:
# 识别图片中的人脸
import face_recognition
jobs_image = face_recognition.load_image_file("jobs.jpg");
obama_image = face_recognition.load_image_file("obama.jpg");
unknown_image = face_recognition.load_image_file("unknown.jpg");

jobs_encoding = face_recognition.face_encodings(jobs_image)[0]
obama_encoding = face_recognition.face_encodings(obama_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([jobs_encoding, obama_encoding], unknown_encoding )
labels = ['jobs', 'obama']

print('results:'+str(results))

for i in range(0, len(results)):
if results[i] == True:
print('The person is:'+labels[i])

运行结果:

识别出未知的那张照片是乔布斯的。
摄像头实时识别
代码:
# -*- coding: utf-8 -*-
import face_recognition
import cv2

video_capture = cv2.VideoCapture(1)

obama_img = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_img)[0]

face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
ret, frame = video_capture.read()

small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

if process_this_frame:
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)

face_names = []
for face_encoding in face_encodings:
match = face_recognition.compare_faces([obama_face_encoding], face_encoding)

if match[0]:
name = "Barack"
else:
name = "unknown"

face_names.append(name)

process_this_frame = not process_this_frame

for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4

cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+6, bottom-6), font, 1.0, (255, 255, 255), 1)

cv2.imshow('Video', frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

video_capture.release()
cv2.destroyAllWindows()5455

识别结果:
我直接在手机上网络了几张图试试,程序识别出了奥巴马。

这个库很cool啊!

‘捌’ 去哪里找python的开源项目

GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名GitHub。作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户。随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及发现已有代码的首选方法。在GitHub,用户可以十分轻易地找到海量的开源代码。

下面给大家介绍一些GitHub上25个开源项目:

(1)TensorFlow Models

如果你对机器学习和深度学习感兴趣,一定听说过TensorFlow。TensorFlow Models是一个开源存储库,可以找到许多与深度学习相关的库和模型。

(GitHub: https://github.com/tensorflow/models )

(2)Keras

Keras是一个高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。旨在完成深度学习的快速开发(GitHub: https://github.com/keras-team/keras )

(3)Flask

Flask 是一个微型的 Python 开发的 Web 框架,基于Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授权。

(GitHub: https://github.com/pallets/flask )

(4)scikit-learn

scikit-learn是一个用于机器学习的Python模块,基于 NumPy、SciPy 和 matplotlib 构建。,并遵循 BSD 许可协议。

(GitHub: https://github.com/scikit-learn )

(5)Zulip

Zulip是一款功能强大的开源群聊应用程序,它结合了实时聊天的即时性和线程对话的生产力优势。Zulip作为一个开源项目,被许多世界500强企业,大型组织以及其他需要实时聊天系统的用户选择使用,该系统允许用户每天轻松处理数百或数千条消息。Zulip拥有超过300名贡献者,每月合并超过500次提交,也是规模最大,发展最快的开源群聊项目。

(GitHub: https://github.com/zulip/zulip )

相关推荐:《Python入门教程》

(6)Django

Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC)风格的 Web 应用程序框架,旨在快速开发出清晰,实用的设计。使用 Django,我们在几分钟之内就可以创建高品质、易维护、数据库驱动的应用程序。

(GitHub: https://github.com/django/django )

(7)Rebound

Rebound 是一个当你得到编译错误时即时获取 Stack Overflow 结果的命令行工具。 就用 rebound 命令执行你的文件。这对程序员来说方便了不少。

(GitHub: https://github.com/shobrook/rebound )

(8)Google Images Download

这是一个命令行python程序,用于搜索Google Images上的关键字/关键短语,并可选择将图像下载到您的计算机。你也可以从另一个python文件调用此脚本。

(GitHub: https://github.com/hardikvasa/google-images-download )

(9)YouTube-dl

youtube-dl 是基于 Python 的命令行媒体文件下载工具,完全开源免费跨平台。用户只需使用简单命令并提供在线视频的网页地址即可让程序自动进行嗅探、下载、合并、命名和清理,最终得到已经命名的完整视频文件。

(GitHub: htt ps://github.com/rg3/youtube-dl )

(10)System Design Primer

此repo是一个系统的资源集合,可帮助你了解如何大规模构建系统。

(GitHub: https://github.com/donnemartin/system-design-primer )

(11)Mask R-CNN

Mask R-CNN用于对象检测和分割。这是对Python 3,Keras和TensorFlow的Mask R-CNN实现。该模型为图像中对象的每个实例生成边界框和分割蒙版。它基于特Feature Pyramid Network(FPN)和 ResNet101 backbone。

(GitHub: https://github.com/matterport/Mask_RCNN )

(12)Face Recognition

Face Recognition 是一个基于 Python 的人脸识别库,使用十分简便。这还提供了一个简单的face_recognition命令行工具,可以让您从命令行对图像文件夹进行人脸识别!

(GitHub: https://github.com/ageitgey/face_recognition )

(13)snallygaster

用于扫描HTTP服务器上的机密文件的工具。

(GitHub: https://github.com/hannob/snallygaster )

(14)Ansible

Ansible是一个极其简单的IT自动化系统。它可用于配置管理,应用程序部署,云配置,支持远程任务执行和多节点发布 - 包括通过负载平衡器轻松实现零停机滚动更新等操作。

(GitHub: https://github.com/ansible/ansible )

(15)Detectron

Detectron是Facebook AI 研究院开源的的软件系统,它实现了最先进的目标检测算法,包括Mask R-CNN。它是用Python编写的,由Caffe2深度学习框架提供支持。

(16)asciinema

终端会话记录器和asciinema.org的最佳搭档。

(GitHub: https://github.com/asciinema/asciinema )

(17)HTTPie

HTTPie 是一个开源的命令行的 HTTP 工具包,其目标是使与Web服务的CLI交互尽可能人性化。它提供了一个简单的http命令,允许使用简单自然的语法发送任意HTTP请求,并显示彩色输出。HTTPie可用于测试,调试以及通常与HTTP服务器交互。

(GitHub: https://github.com/jakubroztocil/httpie )

(18)You-Get

You-Get是一个小型命令行实用程序,用于从Web下载媒体内容(视频,音频,图像),支持国内外常用的视频网站。

(GitHub: https://github.com/soimort/you-get )

(19)Sentry

Sentry从根本上讲是一项服务,可以帮助用户实时监控和修复崩溃。基于Django构建,它包含一个完整的API,用于从任何语言、任何应用程序中发送事件。

(GitHub: https://github.com/getsentry/sentry )

(20)Tornado

Tornado是使用Python开发的全栈式(full-stack)Web框架和异步网络库,,最初是由FriendFeed上开发的。通过使用非阻塞网络I / O,Tornado可以扩展到数万个开放连接,是long polling、WebSockets和其他需要为用户维护长连接应用的理想选择。

(GitHub: https://github.com/tornadoweb/tornado )

(21)Magenta

Magenta是一个探索机器学习在创造艺术和音乐过程中的作用的研究项目。这主要涉及开发新的深度学习和强化学习算法,用于生成歌曲,图像,绘图等。但它也是构建智能工具和界面的探索,它允许艺术家和音乐家使用这些模型。

(GitHub: https://github.com/tensorflow/magenta )

(22)ZeroNet

ZeroNet是一个利用比特币的加密算法和BitTorrent技术提供的不受审查的网络,完全开源。

(GitHub: https://github.com/HelloZeroNet/ZeroNet )

(23)Gym

OpenAI Gym是一个用于开发和比较强化学习算法的工具包。这是Gym的开源库,可让让你访问标准化的环境。

(GitHub: https://github.com/openai/gym )

(24)Pandas

Pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。此外,它还有更广泛的目标,即成为所有语言中最强大,最灵活的开源数据分析/操作工具。它目前已经朝着这个目标迈进。

(GitHub: https://github.com/pandas-dev/pandas )

(25)Luigi

Luigi 是一个 Python 模块,可以帮你构建复杂的批量作业管道。处理依赖决议、工作流管理、可视化展示等等,内建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )

阅读全文

与githubpythonapi相关的资料

热点内容
id加密门禁卡可以复制到手机吗 浏览:672
路由器如何控制某个app 浏览:43
C51编译器在标准C的基础上 浏览:260
银行卡掉了可以办车贷解压吗 浏览:317
没解压可以贷款吗 浏览:517
最小pdf阅读器 浏览:808
游戏被加密了怎样用电脑打开 浏览:300
蓝灯如何手动选择服务器 浏览:85
服务器设置在中国意味什么 浏览:571
单片机不能进行选择控制 浏览:694
咕咚手表如何绑定手机app 浏览:530
命令虚拟语气 浏览:405
戴尔系统命令 浏览:583
怎样压缩视频文件大小 浏览:686
51单片机信号发生器 浏览:56
米拍摄影哪个app好 浏览:88
天津致远曙光服务器云服务器 浏览:117
光子程序员怎么获得 浏览:535
中医诊断学第九版pdf 浏览:498
python集成包 浏览:305