简单网络管理协议SNMP(Simple Network Management Protocol)用于网络设备的管理。SNMP作为广泛应用于TCP/IP网络的网络管理标准协议,提供了统一的接口,从而实现了不同种类和厂商的网络设备之间的统一管理。
SNMP协议分为三个版本:SNMPv1、SNMPv2c和SNMPv3。
SNMP系统由网络管理系统NMS(Network Management System)、SNMP Agent、被管对象Management object和管理信息库MIB(Management Information Base)四部分组成。
SNMP查询是指NMS主动向SNMP Agent发送查询请求,如图1-3所示。SNMP Agent接收到查询请求后,通过MIB表完成相应指令,并将结果反馈给NMS。SNMP查询操作有三种:Get、GetNext和GetBulk。SNMPv1版本不支持GetBulk操作。
不同版本的SNMP查询操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv2c版本的Get操作为例介绍SNMP查询操作的工作原理。假定NMS想要获取被管理设备MIB节点sysContact的值,使用可读团体名为public,过程如下所示:
SNMP设置是指NMS主动向SNMP Agent发送对设备进行Set操作的请求,如下图示。SNMP Agent接收到Set请求后,通过MIB表完成相应指令,并将结果反馈给NMS。
不同版本的SNMP Set操作的工作原理基本一致,唯一的区别是SNMPv3版本增加了身份验证和加密处理。下面以SNMPv3版本的Set操作为例介绍SNMP Set操作的工作原理。
假定NMS想要设置被管理设备MIB节点sysName的值为HUAWEI,过程如下所示:
SNMPv1和SNMPv2c的Set操作报文格式如下图所示。一般情况下,SNMPv3的Set操作信息是经过加密封装在SNMP PDU中,其格式与SNMPv2c的Set操作报文格式一致。
SNMP Traps是指SNMP Agent主动将设备产生的告警或事件上报给NMS,以便网络管理员及时了解设备当前运行的状态。
SNMP Agent上报SNMP Traps有两种方式:Trap和Inform。SNMPv1版本不支持Inform。Trap和Inform的区别在于,SNMP Agent通过Inform向NMS发送告警或事件后,NMS需要回复InformResponse进行确认。
在Ensp中搭建网络环境,在R2上启用SNMP作为SNMP agent,linux主机作为NMS;为方便观察SNMP报文格式,在R2使用SNMP的版本为v2c。
通过下面的Python脚本获取R2的系统信息与当前的主机名
运行结果如下
在R2接口上抓包结果如下,Linux主机向R2的161端口发送SNMP get-request报文,可以看到SNMP使用的版本为v2c,设置的团体名为public,随机生成了一个request-id,变量绑定列表(Variable bindings),即要查询的OID,但Value为空;值得注意的是这些信息都是明文传输的,为了安全在实际环境中应使用SNMPv3。
通过下面的Python脚本获取R2的接口信息。
运行结果如下:
在R2接口抓包结果如下,getBuikRequest相比get-request设置了一个max-repetitions字段,表明最多执行get操作的次数。Variable bindings中请求的OID条目只有一条。
下面Python脚本用于设置R2的主机名为SNMPv2R2。
运行结果如下
在路由器上可以看到主机名有R2变为了SNMPv2R2。
get-response数据包内容与set-request中无异。
下面Python脚本用于接收,R2发送的Trap,并做简单解析。
先运行该脚本,之后再R2上手动将一个接口shutdown,结果如下:
接口上抓包结果如下,此时团体名用的是public,data部分表明是trap。
由于Ensp中的通用路由器认证算法只支持des56,而pysnmp不支持该算法,因此使用AR路由器配置SNMPv3。
使用下面Python脚本发送snmpv3 get报文获取设备系统信息。
抓包结果如下,首先发送get-resques进行SNMPv3认证请求,随机生成一个msgID,认证模式为USM,msgflgs中Reportable置1要求对方发送report,其他为置0,表示不进行加密与鉴权;另外安全参数,认证参数、加密参数都为空,此时不携带get请求数据。
路由器给NMS回复report,msgID与resquest一致,Msgflgs中各位都置0,同时回复使用的安全引擎,认证与加密参数为空,不进行认证与加密,因此能看到data中的数据。
AR1收到请求后进行回复,数据包中msgflags标志位中除reportable外其他位都置1,表示不需要回复,同时进行加密与鉴权。同样也可以看到认证用户为testuser,认证参数与加密参数都有填充,data部分也是同样加密。
参考:
什么是SNMP - 华为 (huawei.com)
AR100-S V300R003 MIB参考 - 华为 (huawei.com)
SNMP library for Python — SNMP library for Python 4.4 documentation (pysnmp.readthedocs.io)
⑵ Python 之 Socket编程(TCP/UDP)
socket(family,type[,protocal]) 使用给定的地址族、套接字类型、协议编号(默认为0)来创建套接字。
有效的端口号: 0~ 65535
但是小于1024的端口号基本上都预留给了操作系统
POSIX兼容系统(如Linux、Mac OS X等),在/etc/services文件中找到这些预留端口与的列表
面向连接的通信提供序列化、可靠的和不重复的数据交付,而没有记录边界。意味着每条消息都可以拆分多个片段,并且每个消息片段都能到达目的地,然后将它们按顺序组合在一起,最后将完整的信息传递给等待的应用程序。
实现方式(TCP):
传输控制协议(TCP), 创建TCP必须使用SOCK_STREAM作为套接字类型
因为这些套接字(AF_INET)的网络版本使用因特网协议(IP)来搜寻网络中的IP,
所以整个系统通常结合这两种协议(TCP/IP)来进行网络间数据通信。
数据报类型的套接字, 即在通信开始之前并不需要建议连接,当然也无法保证它的顺序性、可靠性或重复性
实现方式(UDP)
用户数据包协议(UDP), 创建UDP必须使用SOCK_DGRAM (datagram)作为套接字类型
它也使用因特网来寻找网络中主机,所以是UDP和IP的组合名字UDP/IP
注意点:
1)TCP发送数据时,已建立好TCP连接,所以不需要指定地址。UDP是面向无连接的,每次发送要指定是发给谁。
2)服务端与客户端不能直接发送列表,元组,字典。需要字符串化repr(data)。
TCP的优点: 可靠,稳定 TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源。
TCP的缺点: 慢,效率低,占用系统资源高,易被攻击 TCP在传递数据之前,要先建连接,这会消耗时间,而且在数据传递时,确认机制、重传机制、拥塞控制机制等都会消耗大量的时间,而且要在每台设备上维护所有的传输连接,事实上,每个连接都会占用系统的CPU、内存等硬件资源。 而且,因为TCP有确认机制、三次握手机制,这些也导致TCP容易被人利用,实现DOS、DDOS、CC等攻击。
什么时候应该使用TCP : 当对网络通讯质量有要求的时候,比如:整个数据要准确无误的传递给对方,这往往用于一些要求可靠的应用,比如HTTP、HTTPS、FTP等传输文件的协议,POP、SMTP等邮件传输的协议。 在日常生活中,常见使用TCP协议的应用如下: 浏览器,用的HTTP FlashFXP,用的FTP Outlook,用的POP、SMTP Putty,用的Telnet、SSH QQ文件传输.
UDP的优点: 快,比TCP稍安全 UDP没有TCP的握手、确认、窗口、重传、拥塞控制等机制,UDP是一个无状态的传输协议,所以它在传递数据时非常快。没有TCP的这些机制,UDP较TCP被攻击者利用的漏洞就要少一些。但UDP也是无法避免攻击的,比如:UDP Flood攻击……
UDP的缺点: 不可靠,不稳定 因为UDP没有TCP那些可靠的机制,在数据传递时,如果网络质量不好,就会很容易丢包。
什么时候应该使用UDP: 当对网络通讯质量要求不高的时候,要求网络通讯速度能尽量的快,这时就可以使用UDP。 比如,日常生活中,常见使用UDP协议的应用如下: QQ语音 QQ视频 TFTP ……
⑶ Python能干什么,Python的应用领域
Python 作为一种功能强大的编程语言,因其简单易学而受到很多开发者的青睐。那么,Python 的应用领域有哪些呢?
概括起来,Python 的应用领域主要有如下几个。
Web应用开发
Python 经常被用于 Web 开发。例如,通过 mod_wsgi 模块,Apache 可以运行用 Python 编写的 Web 程序。Python 定义了 WSGI 标准应用接口来协调 HTTP 服务器与基于 Python 的 Web 程序之间的通信。
不仅如此,一些 Web 框架(如 Django、TurboGears、web2py 等等)可以让程序员轻松地开发和管理复杂的Web程序。
举个最直观的例子,全球最大的搜索引擎 Google,在其网络搜索系统中就广泛使用 Python 语言。另外,我们经常访问的集电影、读书、音乐于一体的豆瓣网,也是使用 Python 实现的。
操作系统管理、自动化运维开发
很多操作系统中,Python 是标准的系统组件,大多数 Linux 发行版以及 NetBSD、OpenBSD 和 Mac OS X 都集成了 Python,可以在终端下直接运行 Python。
有一些 Linux 发行版的安装器使用 Python 语言编写,例如 Ubuntu 的 Ubiquity 安装器、Red Hat Linux 和 Fedora 的 Anaconda 安装器等等。
另外,Python 标准库中包含了多个可用来调用操作系统功能的库。例如,通过 pywin32 这个软件包,我们能访问 Windows 的 COM 服务以及其他 Windows API;使用 IronPython,我们能够直接调用 .Net Framework。
通常情况下,Python 编写的系统管理脚本,无论是可读性,还是性能、代码重用度以及扩展性方面,都优于普通的 shell 脚本。
游戏开发
很多游戏使用 C++ 编写图形显示等高性能模块,而使用 Python 或 Lua 编写游戏的逻辑。和 Python 相比,Lua 的功能更简单,体积更小;而 Python 则支持更多的特性和数据类型。
编写服务器软件
Python 对于各种网络协议的支持很完善,所以经常被用于编写服务器软件以及网络爬虫。
比如说,Python 的第三方库 Twisted,它支持异步网络编程和多数标准的网络协议(包含客户端和服务器端),并且提供了多种工具,因此被广泛用于编写高性能的服务器软件。
科学计算
NumPy、SciPy、Matplotlib 可以让 Python 程序员编写科学计算程序。
以上都只是 Python 应用领域的冰山一角,总的来说,Python 语言不仅可以应用到网络编程、游戏开发等领域,还可以在图形图像处理、只能机器人、爬取数据、自动化运维等多方面展露头角,为开发者提供简约、优雅的编程体验。
⑷ Python网络编程 -- TCP/IP
首先放出一个 TCP/IP 的程序,这里是单线程服务器与客户端,在多线程一节会放上多线程的TCP/IP服务程序。
这里将服务端和客户端放到同一个程序当中,方便对比服务端与客户端的不同。
TCP/IP是因特网的通信协议,其参考OSI模型,也采用了分层的方式,对每一层制定了相应的标准。
网际协议(IP)是为全世界通过互联网连接的计算机赋予统一地址系统的机制,它使得数据包能够从互联网的一端发送至另一端,如 130.207.244.244,为了便于记忆,常用主机名代替IP地址,例如 .com。
UDP (User Datagram Protocol,用户数据报协议) 解决了上述第一个问题,通过端口号来实现了多路复用(用不同的端口区分不同的应用程序)但是使用UDP协议的网络程序需要自己处理丢包、重包和包的乱序问题。
TCP (Transmission Control Protocol,传输控制协议) 解决了上述两个问题,同样使用端口号实现了复用。
TCP 实现可靠连接的方法:
socket通信模型及 TCP 通信过程如下两张图。
[图片上传失败...(image-6d947d-1610703914730)]
[图片上传失败...(image-30b472-1610703914730)]
socket.getaddrinfo(host, port, family, socktype, proto, flags)
返回: [(family, socktype, proto, cannonname, sockaddr), ] 由元组组成的列表。
family:表示socket使用的协议簇, AF_UNIX : 1, AF_INET: 2, AF_INET6 : 10。 0 表示不指定。
socktype: socket 的类型, SOCK_STREAM : 1, SOCK_DGRAM : 2, SOCK_RAW : 3
proto: 协议, 套接字所用的协议,如果不指定, 则为 0。 IPPROTO_TCP : 6, IPPRTOTO_UDP : 17
flags:标记,限制返回内容。 AI_ADDRCONFIG 把计算机无法连接的所有地址都过滤掉(如果一个机构既有IPv4,又有IPv6,而主机只有IPv4,则会把 IPv6过滤掉)
AI _V4MAPPED, 如果本机只有IPv6,服务却只有IPv4,这个标记会将 IPv4地址重新编码为可实际使用的IPv6地址。
AI_CANONNAME,返回规范主机名:cannonname。
getaddrinfo(None, 'smtp', 0, socket.SOCK_STREAM, 0, socket.AP_PASSIVE)
getaddrinfo('ftp.kernel.org', 'ftp', 0, 'socket.SOCK_STREAM, 0, socket.AI_ADDRCONFIG | socket.AI_V4MAPPED)
利用已经通信的套接字名提供给getaddrinfo
mysock = server_sock.accept()
addr, port = mysock.getpeername()
getaddrinfo(addr, port, mysock.family, mysock.type, mysock.proto, socket.AI_CANONNAME)
TCP 数据发送模式:
由于 TCP 是发送流式数据,并且会自动分割发送的数据包,而且在 recv 的时候会阻塞进程,直到接收到数据为止,因此会出现死锁现象,及通信双方都在等待接收数据导致无法响应,或者都在发送数据导致缓存区溢出。所以就有了封帧(framing)的问题,即如何分割消息,使得接收方能够识别消息的开始与结束。
关于封帧,需要考虑的问题是, 接收方何时最终停止调用recv才是安全的?整个消息或数据何时才能完整无缺的传达?何时才能将接收到的消息作为一个整体来解析或处理。
适用UDP的场景:
由于TCP每次连接与断开都需要有三次握手,若有大量连接,则会产生大量的开销,在客户端与服务器之间不存在长时间连接的情况下,适用UDP更为合适,尤其是客户端太多的时候。
第二种情况: 当丢包现象发生时,如果应用程序有比简单地重传数据聪明得多的方法的话,那么就不适用TCP了。例如,如果正在进行音频通话,如果有1s的数据由于丢包而丢失了,那么只是简单地不断重新发送这1s的数据直至其成功传达是无济于事的。反之,客户端应该从传达的数据包中任意选择一些组合成一段音频(为了解决这一问题,一个智能的音频协议会用前一段音频的高度压缩版本作为数据包的开始部分,同样将其后继音频压缩,作为数据包的结束部分),然后继续进行后续操作,就好像没有发生丢包一样。如果使用TCP,那么这是不可能的,因为TCP会固执地重传丢失的信息,即使这些信息早已过时无用也不例外。UDP数据报通常是互联网实时多媒体流的基础。
参考资料:
⑸ python标准库中常用的网络相关模块有哪些
标准库 Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。 Python标准库的主要功能有: 1.文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能 2.文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能 3.操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志(logging)等功能 4.网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能 5.网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架 6.W3C格式支持,包含HTML,SGML,XML的处理。 7.其它功能,包括国际化支持、数学运算、HASH、Tkinter等 Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖科学计算、Web开发、数据库接口、图形系统多个领域。第三方模块可以使用Python或者C语言编写。SWIG,SIP常用于将C语言编写的程序库转化为Python模块。Boost C++ Libraries包含了一组函式库,Boost.Python,使得以Python或C++编写的程式能互相调用。Python常被用做其他语言与工具之间的“胶水”语言。 着名第三方库 1.Web框架 Django: 开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。 ActiveGrid: 企业级的Web2.0解决方案。 Karrigell: 简单的Web框架,自身包含了Web服务,py脚本引擎和纯python的数据库PyDBLite。 Tornado: 一个轻量级的Web框架,内置非阻塞式服务器,而且速度相当快 webpy: 一个小巧灵活的Web框架,虽然简单但是功能强大。 CherryPy: 基于Python的Web应用程序开发框架。 Pylons: 基于Python的一个极其高效和可靠的Web开发框架。 Zope: 开源的Web应用服务器。 TurboGears: 基于Python的MVC风格的Web应用程序框架。 Twisted: 流行的网络编程库,大型Web框架。 Quixote: Web开发框架。 2.科学计算 Matplotlib: 用Python实现的类matlab的第三方库,用以绘制一些高质量的数学二维图形。 SciPy: 基于Python的matlab实现,旨在实现matlab的所有功能。 NumPy: 基于Python的科学计算第三方库,提供了矩阵,线性代数,傅立叶变换等等的解决方案。 3.GUI PyGtk: 基于Python的GUI程序开发GTK+库。 PyQt: 用于Python的QT开发库。 WxPython: Python下的GUI编程框架,与MFC的架构相似。 4.其它 BeautifulSoup: 基于Python的HTML/XML解析器,简单易用。 PIL: 基于Python的图像处理库,功能强大,对图形文件的格式支持广泛。 PyGame: 基于Python的多媒体开发和游戏软件开发模块。 Py2exe: 将python脚本转换为windows上可以独立运行的可执行程序。
⑹ Python网络编程5-实现DHCP Client
DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),前身是BOOTP协议,是一个局域网的网络协议,使用UDP协议工作,统一使用两个IANA分配的端口:67(服务器端),68(客户端)。主要作用是集中的管理、分配IP地址,使client动态的获得IP地址、Gateway地址、DNS服务器地址等信息。
option字段
DHCP报文中的Options字段可以用来存放普通协议中没有定义的控制信息和参数。如果用户在DHCP服务器端配置了Options字段,DHCP客户端在申请IP地址的时候,会通过服务器端回应的DHCP报文获得Options字段中的配置信息。
获取IP地址过程
实验使用的linux 主机由两个网络接口,其中ens33使用DHCP获取IP地址,ens37使用静态IP地址;因此需要使用ens33来发送数据包。
Change_MAC.py用于MAC地址与Bytes类型相互转换。
DHCP_Discover.py用于发送DHCP Discover报文;其中GET_MAC.py见ARP章节。
DHCP_Request.py用于发送DHCP Request报文。
DHCP_FULL.py用于完成DHCP Client与DHCP Server的报文交互
Wireshark对远程linux主机抓包,结果如下
客户端以广播发送DHCP Discover包,其中报文操作类型为1(请求报文),DHCP客户端的MAC地址设置为00:0c:29:03:a1:08,option53设置报文类型为Discover,option55(请求选项列表)中包含请求的参数。
服务器以单播向客户端回复信息,其中报文操作类型为2(应答报文),分配给客户端的IP为192.168.160.146,option 53设置报文类型为offer,Option 54设置服务器标识为192.168.160.254,其他option为客户端请求列表的应答。
值得注意的是,交互的四个报文中Transaction ID均为0x00000000,表明是同一次DHCP交互报文。
⑺ Python3 & TCP协议和UDP协议的特点和区别
优点:
(1)TCP是面向连接的运输层协议;
(2)每一条TCP连接只能有两个端点(即两个套接字),只能是点对点的;
(3)TCP提供可靠的传输服务。传送的数据无差错、不丢失、不重复、按序到达;
(4)TCP提供全双工通信。允许通信双方的应用进程在任何时候都可以发送数据,因为两端都设有发送缓存和接受缓存;
(5)面向字节流。虽然应用程序与TCP交互是一次一个大小不等的数据块,但TCP把这些数据看成一连串无结构的字节流,它不保证接收方收到的数据块和发送方发送的数据块具有对应大小关系,例如,发送方应用程序交给发送方的TCP10个数据块,但就受访的TCP可能只用了4个数据块久保收到的字节流交付给上层的应用程序,但字节流完全一样。
缺点:
慢,效率低,占用系统资源高,易被攻击 TCP在传递数据之前,要先建连接,这会消耗时间,在数据传递时,确认机制、重传机制、拥塞控制机制等都会消耗大量的时间,而且要在每台设备上维护所有的传输连接。事实上,每个连接都会占用系统的CPU、内存等硬件资源。因为TCP有确认机制、三次握手机制,这些也导致TCP容易被人利用,实现DOS、DDOS、CC等攻击。
TCP的应用场景:
当对网络通讯质量有要求的时候。例如:整个数据要准确无误的传递给对方,这往往用于一些要求可靠的应用。如:用于文件传输(FTP HTTP 对数据准确性要求高,速度可以相对慢),发送或接收邮件(POP IMAP SMTP 对数据准确性要求高,非紧急应用),远程登录(TELNET SSH 对数据准确性有一定要求,有连接的概念)等等。
优点:
(1)UDP是无连接的传输层协议;
(2)UDP使用尽最大努力交付,不保证可靠交付;
(3)UDP是面向报文的,对应用层交下来的报文,不合并,不拆分,保留原报文的边界;
(4)UDP没有拥塞控制,因此即使网络出现拥塞也不会降低发送速率;
(5)UDP支持一对一一对多多对多的交互通信;
(6)UDP的首部开销小,只有8字节.
缺点:
不可靠,不稳定。 因为UDP没有TCP那些可靠的机制,在数据传递时,如果网络质量不好,就会很容易丢包。
UDP的应用场景:
当对网络通讯质量要求不高的时候,要求网络通讯速度能尽量的快,这时就可以使用UDP。 UDP一般用于即时通信(QQ聊天 对数据准确性和丢包要求比较低,但速度必须快),在线视频(RTSP 速度一定要快,保证视频连续,但是偶尔花了一个图像帧,人们还是能接受的),网络语音电话(VoIP 语音数据包一般比较小,需要高速发送,偶尔断音或串音也没有问题)等等。
(1)TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
(2)TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
(3)TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
(4)每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
(5)TCP首部开销20字节;UDP的首部开销小,只有8个字节
(6)TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道
HTTP、HTTPS、FTP、TELNET、SMTP(简单邮件传输协议)协议基于可靠的TCP协议。TFTP、DNS、DHCP、TFTP、SNMP(简单网络管理协议)、RIP基于不可靠的UDP协议