导航:首页 > 编程语言 > pythongaussiankde

pythongaussiankde

发布时间:2023-06-13 20:34:17

‘壹’ 如何用python写 数据分析工具

‘贰’ python可视化界面怎么做


本文所演示的的可视化方法

散点图(Scatterplot)

直方图(Histogram)

小提琴图(Violinplot)

特征两两对比图(Pairplot)

安德鲁斯曲线(Andrewscurves)

核密度图(Kerneldensityestimationplot)

平行坐标图(Parallelcoordinates)

Radviz(力矩图?)

热力图(Heatmap)

气泡图(Bubbleplot)

这里主要使用Python一个流行的作图工具:Seabornlibrary,同时Pandas和bubbly辅助。为什么Seaborn比较好?

因为很多时候数据分析,建模前,都要清洗数据,清洗后数据的结果总要有个格式,我知道的最容易使用,最方便输入模型,最好画图的格式叫做"TidyData"(WickhamH.Tidydata[J].JournalofStatisticalSoftware,2014,59(10):1-23.)其实很简单,TidyData格式就是:

每条观察(记录)自己占一行

观察(记录)的每个特征自己占一列

举个例子,我们即将作图的数据集IRIS就是TidyData(IRIS(IRIS数据集)_网络):

Iris数据集是常用的分类实验数据集,由Fisher,1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

该数据集包含了5个属性:

Sepal.Length(花萼长度),单位是cm;

Sepal.Width(花萼宽度),单位是cm;

Petal.Length(花瓣长度),单位是cm;

Petal.Width(花瓣宽度),单位是cm;

种类:IrisSetosa(山鸢尾)、IrisVersicolour(杂色鸢尾),以及IrisVirginica(维吉尼亚鸢尾)。

IRIS数据

可以看到,每条观察(ID=0,1,2...)自己占一行,每个特征(四个部位长/宽度,种类)自己占一列。Seaborn就是为TidyData设计的,所以方便使用。

所以这个数据集有6列,6个特征,很多时候做可视化就是为了更好的了解数据,比如这里就是想看每个种类的花有什么特点,怎么样根据其他特征把花分为三类。我个人的喜好是首先一张图尽量多的包含数据点,展示数据信息,从中发现规律。我们可以利用以下代码完全展示全部维度和数据这里用的bubbly:

三维图,全局观察

Python做出来,其实是一张可以拖动角度,放大缩小的图,拖一拖看各角度视图会发现三类还是分的挺明显的。Github上这个bubbly还是很厉害的,方便。

接下来开始做一些基础的可视化,没有用任何修饰,代码只有最关键的画图部分,可视化作卖敬悄为比赛的一个基础和开端,个人理解做出的图能看就行,美不美无所谓,不美也不扣分。因为

散点图,可以得到相关性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大

散点图

使用Jointplot,看两个变量的分布,KDE图,同时展示对应的数据点

就像上一篇说的,比赛中的每个环节都稿则至关重要,很有必要看下这些分布直方图,kde图,根据这些来处理异常值等,这里请教,为什么画了直方图还要画KDE??我理解说的都是差不多的东西。

关于KDE:"由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。"

无论如何,我们先画直方图,再画KDE

直方图KDE图

这里通过KDE可以说,由于Setosa的KDE与其他两种没有交集,直接可以用Petailength线性区分Setosa与其他两个物种。

Pairplot

箱线图,显示一组数据分散情况的统计图。形状如箱子。主要用于反映原始数据分布的特征,关键的5个黑线是最中渣大值、最小值、中位数和两个四分位数。在判断异常值,处理异常值时候有用。

BoxPlot

小提琴图

Violinplot

这个Andrewscurves很有趣,它是把所有特征组合起来,计算个值,展示该值,可以用来确认这三个物种到底好不好区分,维基网络的说法是“Ifthereisstructureinthedata,itmaybevisibleintheAndrews'curvesofthedata.”(Andrewsplot-Wikipedia)

Andrews'curvesradviz

Radviz可视化原理是将一系列多维空间的点通过非线性方法映射到二维空间的可视化技术,是基于圆形平行坐标系的设计思想而提出的多维可视化方法。圆形的m条半径表示m维空间,使用坐标系中的一点代表多为信息对象,其实现原理参照物理学中物体受力平衡定理。多维空间的点映射到二维可视空间的位置由弹簧引力分析模型确定。(Radviz可视化原理-CSDN博客),能展示一些数据的可区分规律。

数值是皮尔森相关系数,浅颜色表示相关性高,比如Petal.Length(花瓣长度)与Petal.Width(花瓣宽度)相关性0.96,也就是花瓣长的花,花瓣宽度也大,也就是个大花。

不过,现在做可视化基本上不用python了,具体为什么可以去看我的写的文章,我拿python做了爬虫,BI做了可视化,效果和速度都很好。

finereport

可视化的一大应用就是数据报表,而FineReport可以自由编写整合所需要的报表字段进行报表输出,支持定时刷新和监控邮件提醒,是大部分互联网公司会用到的日常报表平台。

尤其是公司体系内经营报表,我们用的是商业报表工具,就是finereport。推荐他是因为有两个高效率的点:①可以完成从数据库取数(有整合数据功能)—设计报表模板—数据展示的过程。②类似excel做报表,一张模板配合参数查询可以代替几十张报表。

FineBI

简洁明了的数据分析工具,也是我个人最喜欢的可视化工具,优点是零代码可视化、可视化图表丰富,只需要拖拖拽拽就可以完成十分炫酷的可视化效果,拥有数据整合、可视化数据处理、探索性分析、数据挖掘、可视化分析报告等功能,更重要的是个人版免费。

主要优点是可以实现自助式分析,而且学习成本极低,几乎不需要太深奥的编程基础,比起很多国外的工具都比较易用上手,非常适合经常业务人员和运营人员。在综合性方面,FineBI的表现比较突出,不需要编程而且简单易做,能够实现平台展示,比较适合企业用户和个人用户,在数据可视化方面是一个不错的选择;

这些是我见过比较常用的,对数据探索有帮助的可视化方法。


这个非常简单,PyQt就可以轻松实现,一个基于Qt的接口包,可以直接拖拽控件设计UI界面,下面我简单介绍一下这个包的安装和使用,感兴趣的朋友可以自己尝试一下:

1.首先,安装PyQt模块,这个直接在cmd窗口输入命令“pipinstallpyqt5”就行,如下,整个模块比较大,下载过程需要等待一会儿,保持联网:

2.安装完成后,我们就可以直接打开Qt自带的QtDesigner设计师设计界面了,这里默认会安装到site-packages->PyQt5->Qt->bin目录,打开后的界面如下,可以直接新建对话框等窗口,所有的控件都可以直接拖拽,编辑属性,非常方便:

3.这里我简单的设计了一个登录窗口,2个输入框和2个按钮,如下,这里可以直接使用QSS对界面进行美化(设置styleSheet属性即可),类似网页的CSS,如果你有一定的前端基础,那么美化起来会非常容易:

设计完成后,还只是一个ui文件,不是现成的Python代码,还需要借助pyuic5工具(也在bin目录下)才能将ui文件转化为Python代码,切换到ui文件所在目录,输入命令“pyuic5-ologin.pylogin.ui”即可(这里替换成你的ui文件),转化成功后的Python代码如下(部分截图):

还需要在最下面添加一个main函数,创建上面Ui_Form类对象显示窗口即可,如下:

最后点击运行程序,效果如下,和刚才设计的界面效果一模一样:

至此,我们就完成了利用Python的PyQt模块直接拖拽控件来设计UI界面。总的来说,整个过程非常简单,只要你有一定的Python基础,熟悉一下操作过程,很快就能掌握的,当然,还有许多其他UI开发模块,像tkinter,wxPython,Eric6等,也都非常不错,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。


首先,如果没有安装python和PyQt软件的请先直接搜索下载并安装。python是一个开源软件,因此都是可以在网上免费下载的,最新版本即可。下载完成后,我们先打开PyQtdesigner。

2

打开后,首先是一个默认的新建窗口界面,在这里我们就选择默认的窗口即可。

3

现在是一个完全空白的窗口。第一步我们要先把所有的设计元素都拖进这个窗口。我们先拖入一个“Label”,就是一个不可编辑的标签。

随后我们再拖入一个可以编辑的“LineEdit”

最后我们拖入最后一个元素:“PushButton”按钮,也就是平时我们所点的确定。

目前我们已经把所有所需要的元素都拖入了新建的窗口。对于每一个元素,我们都可以双击进行属性值的修改,此时我们仅需要双击改个名字即可

此时我们已经完成了一半,接下来需要对动作信号进行操作。我们需要先切入编辑信号的模式

此时把鼠标移动到任意元素,都会发现其变成红色,代表其被选中。

当我们选中pushbutton后,继续拖动鼠标指向上面的lineedit,会发现由pushbutton出现一个箭头指向了lineedit,代表pushbutton的动作会对lineedit进行操作。

随即会弹出一个配置连接窗口。左边的是pushbutton的操作,我们选择clicked(),即点击pushbutton。

右边是对lineedit的操作,我们选择clear(),即清楚lineedit中的内容。

最后我们点击确定。

保存完成后,我们在PyQt中的操作就已经完成了。保存的文件名我们命名为test,PyQt生成的设计文件后缀是.ui。


‘叁’ python的seaborn.kdeplot有什么用

kde(kernel density estimation)是核密度估计。核的作用是根据离散采样,估计连续密度分布。
如果原始采样是《阴阳师》里的式神,那么kernel(核函数)就相当于御魂。

假设现在有一系列离散变量X = [4, 5, 5, 6, 12, 14, 15, 15, 16, 17],可见5和15的概率密度应该要高一些,但具体有多高呢?有没有三四层楼那么高,有没有华莱士高?如果要估计的是没有出现过的3呢?这就要自己判断了。

核函数就是给空间的每个离散点都套上一个连续分布。最简单的核函数是Parzen窗,类似一个方波:

这时候单个离散点就可以变成区间,空间或者高维空间下的超立方,实质上是进行了升维。

设h=4,则3的概率密度为:

(只有4对应的核函数为1,其他皆为0)

kernel是非负实值对称可积函数,表示为K,且一本满足:

这样才能保证cdf仍为1。

实际上应用最多的是高斯核函数(Gaussian Kernel),也就是标准正态分布。所谓核密度估计就是把所有离散点的核函数加起来,得到整体的概率密度分布。核密度估计在很多机器学习算法中都有应用,比如K近邻、K平均等。

在支持向量机里,也有“核”的概念,同样也是给数据升维,最常用的还是高斯核函数,也叫径向基函数(Radial Basis Funtion)。
seaborn.kdeplot内置了多种kerne,总有一款适合你。

‘肆’ 如何用python实现图像的一维高斯滤波器

如何用python实现图像的一维高斯滤波器
现在把卷积模板中的值换一下,不是全1了,换成一组符合高斯分布的数值放在模板里面,比如这时中间的数值最大,往两边走越来越小,构造一个小的高斯包。实现的函数为cv2.GaussianBlur()。对于高斯模板,我们需要制定的是高斯核的高和宽(奇数),沿x与y方向的标准差(如果只给x,y=x,如果都给0,那么函数会自己计算)。高斯核可以有效的出去图像的高斯噪声。当然也可以自己构造高斯核,相关函数:cv2.GaussianKernel().
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread(‘flower.jpg‘,0) #直接读为灰度图像
for i in range(2000): #添加点噪声
temp_x = np.random.randint(0,img.shape[0])
temp_y = np.random.randint(0,img.shape[1])
img[temp_x][temp_y] = 255
blur = cv2.GaussianBlur(img,(5,5),0)
plt.subplot(1,2,1),plt.imshow(img,‘gray‘)#默认彩色,另一种彩色bgr
plt.subplot(1,2,2),plt.imshow(blur,‘gray‘)

‘伍’ [译] 高斯混合模型 --- python教程

本文翻译自 https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html

上一节中探讨的k-means聚类模型简单易懂,但其简单性导致其应用中存在实际挑战。具体而言,k-means的非概率特性及简单地计算点与类蔟中心的欧式距离来判定归属,会导致其在许多真实的场景中性能较差。本节,我们将探讨高斯混合模型(GMMs),其可以看成k-means的延伸,更可以看成一个强有力的估计工具,而不仅仅是聚类。

我们将以一个标准的import开始

我们看下k-means的缺陷,思考下如何提高聚类模型。正如上一节所示,给定简单,易于分类的数据,k-means能找到合适的聚类结果。
举例而言,假设我们有些简单的数据点,k-means算法能以某种方式很快地将它们聚类,跟我们肉眼分辨的结果很接近:

从直观的角度来看,我可能期望聚类分配时,某些点比其他的更确定:举例而言,中间两个聚类之间似乎存在非常轻微的重叠,这样我们可能对这些数据点的分配没有完全的信心。不幸的是,k-means模型没有聚类分配的概率或不确定性的内在度量(尽管可能使用bootstrap 的方式来估计这种不确定性)。为此,我们必须考虑泛化这种模型。
k-means模型的一种理解思路是,它在每个类蔟的中心放置了一个圈(或者,更高维度超球面),其半径由聚类中最远的点确定。该半径充当训练集中聚类分配的一个硬截断:任何圈外的数据点不被视为该类的成员。我们可以使用以下函数可视化这个聚类模型:

观察k-means的一个重要发现,这些聚类模式必须是圆形的。k-means没有内置的方法来计算椭圆形或椭圆形的簇。因此,举例而言,假设我们将相同的数据点作变换,这种聚类分配方式最终变得混乱:

高斯混合模型(GMM)试图找到一个多维高斯概率分布的混合,以模拟任何输入数据集。在最简单的情况下,GMM可用于以与k-means相同的方式聚类。

但因为GMM包含概率模型,因此可以找到聚类分配的概率方式 - 在Scikit-Learn中,通过调用predict_proba方法实现。它将返回一个大小为[n_samples, n_clusters]的矩阵,用于衡量每个点属于给定类别的概率:

我们可以可视化这种不确定性,比如每个点的大小与预测的确定性成比例;如下图,我们可以看到正是群集之间边界处的点反映了群集分配的不确定性:

本质上说,高斯混合模型与k-means非常相似:它使用期望-最大化的方式,定性地执行以下操作:

有了这个,我们可以看看四成分的GMM为我们的初始数据提供了什么:

同样,我们可以使用GMM方法来拟合我们的拉伸数据集;允许full的协方差,该模型甚至可以适应非常椭圆形,伸展的聚类模式:

这清楚地表明GMM解决了以前遇到的k-means的两个主要实际问题。

如果看了之前拟合的细节,你将看到covariance_type选项在每个中都设置不同。该超参数控制每个类簇的形状的自由度;对于任意给定的问题,必须仔细设置。默认值为covariance_type =“diag”,这意味着可以独立设置沿每个维度的类蔟大小,并将得到的椭圆约束为与轴对齐。一个稍微简单和快速的模型是covariance_type =“spherical”,它约束了类簇的形状,使得所有维度都相等。尽管它并不完全等效,其产生的聚类将具有与k均值相似的特征。更复杂且计算量更大的模型(特别是随着维数的增长)是使用covariance_type =“full”,这允许将每个簇建模为具有任意方向的椭圆。
对于一个类蔟,下图我们可以看到这三个选项的可视化表示:

尽管GMM通常被归类为聚类算法,但从根本上说它是一种密度估算算法。也就是说,GMM适合某些数据的结果在技术上不是聚类模型,而是描述数据分布的生成概率模型。
例如,考虑一下Scikit-Learn的make_moons函数生成的一些数据:

如果我们尝试用视为聚类模型的双成分的GMM模拟数据,则结果不是特别有用:

但是如果我们使用更多成分的GMM模型,并忽视聚类的类别,我们会发现更接近输入数据的拟合:

这里,16个高斯分布的混合不是为了找到分离的数据簇,而是为了对输入数据的整体分布进行建模。这是分布的一个生成模型,这意味着GMM为我们提供了生成与我们的输入类似分布的新随机数据的方法。例如,以下是从这个16分量GMM拟合到我们原始数据的400个新点:

GMM非常方便,可以灵活地建模任意多维数据分布。

GMM是一种生成模型这一事实为我们提供了一种确定给定数据集的最佳组件数的自然方法。生成模型本质上是数据集的概率分布,因此我们可以简单地评估模型下数据的可能性,使用交叉验证来避免过度拟合。校正过度拟合的另一种方法是使用一些分析标准来调整模型可能性,例如 Akaike information criterion (AIC) 或 Bayesian information criterion (BIC) 。Scikit-Learn的GMM估计器实际上包含计算这两者的内置方法,因此在这种方法上操作非常容易。
让我们看看在moon数据集中,使用AIC和BIC函数确定GMM组件数量:

最佳的聚类数目是使得AIC或BIC最小化的值,具体取决于我们希望使用的近似值。 AIC告诉我们,我们上面选择的16个组件可能太多了:大约8-12个组件可能是更好的选择。与此类问题一样,BIC建议使用更简单的模型。
注意重点:这个组件数量的选择衡量GMM作为密度估算器的效果,而不是它作为聚类算法的效果。我鼓励您将GMM主要视为密度估算器,并且只有在简单数据集中保证时才将其用于聚类。

我们刚刚看到了一个使用GMM作为数据生成模型的简单示例,以便根据输入数据定义的分布创建新样本。在这里,我们将运行这个想法,并从我们以前使用过的标准数字语料库中生成新的手写数字。
首先,让我们使用Scikit-Learn的数据工具加载数字数据:

接下来让我们绘制前100个,以准确回忆我们正在看的内容:

我们有64个维度的近1,800位数字,我们可以在这些位置上构建GMM以产生更多。 GMM可能难以在如此高维空间中收敛,因此我们将从数据上的可逆维数减少算法开始。在这里,我们将使用一个简单的PCA,要求它保留99%的预测数据方差:

结果是41个维度,减少了近1/3,几乎没有信息丢失。根据这些预测数据,让我们使用AIC来计算我们应该使用的GMM组件的数量:

似乎大约110个components最小化了AIC;我们将使用这个模型。我们迅速将其与数据拟合并确保它已收敛合:

现在我们可以使用GMM作为生成模型在这个41维投影空间内绘制100个新点的样本:

最后,我们可以使用PCA对象的逆变换来构造新的数字:

大部分结果看起来像数据集中合理的数字!
考虑一下我们在这里做了什么:给定一个手写数字的样本,我们已经模拟了数据的分布,这样我们就可以从数据中生成全新的数字样本:这些是“手写数字”,不是单独的出现在原始数据集中,而是捕获混合模型建模的输入数据的一般特征。这种数字生成模型可以证明作为贝叶斯生成分类器的一个组成部分非常有用,我们将在下一节中看到。

‘陆’ 常用的生物信息学python库有哪些

常用的生物信息学python库:
Tkinter
Python默认的图形界面接口。Tkinter是一个和Tk接口的Python模块,Tkinter库提供了对Tk API的接口,它属于Tcl/Tk的GUI工具组。
PyGTK
用于python GUI程序开发的GTK+库。GTK就是用来实现GIMP和Gnome的库。
PyQt
用于python的Qt开发库。QT就是实现了KDE环境的那个库,由一系列的模块组成,有qt, qtcanvas, qtgl, qtnetwork, qtsql, qttable, qtui and qtxml,包含有300个类和超过5750个的函数和方法。PyQt还支持一个叫qtext的模块,它包含一个QScintilla库。该库是Scintillar编辑器类的Qt接口。
wxPython
GUI编程框架,熟悉MFC的人会非常喜欢,简直是同一架构(对于初学者或者对设计要求不高的用户来说,使用Boa Constructor可以方便迅速的进行wxPython的开发)
PIL
python提供强大的图形处理的能力,并提供广泛的图形文件格式支持,该库能进行图形格式的转换、打印和显示。还能进行一些图形效果的处理,如图形的放大、缩小和旋转等。是Python用户进行图象处理的强有力工具。
Psyco
一个Python代码加速度器,可使Python代码的执行速度提高到与编译语言一样的水平。
xmpppy
Jabber服务器采用开发的XMPP协议,Google Talk也是采用XMPP协议的IM系统。在Python中有一个xmpppy模块支持该协议。也就是说,我们可以通过该模块与Jabber服务器通信,是不是很Cool。
PyMedia
用于多媒体操作的python模块。它提供了丰富而简单的接口用于多媒体处理(wav, mp3, ogg, avi, divx, dvd, cdda etc)。可在Windows和Linux平台下使用。
Pmw
Python megawidgets,Python超级GUI组件集,一个在python中利用Tkinter模块构建的高级GUI组件,每个Pmw都合并了一个或多个Tkinter组件,以实现更有用和更复杂的功能。
PyXML
用Python解析和处理XML文档的工具包,包中的4DOM是完全相容于W3C DOM规范的。它包含以下内容:
xmlproc: 一个符合规范的XML解析器。Expat: 一个快速的,非验证的XML解析器。还有其他和他同级别的还有 PyHtml PySGML。
PyGame
用于多媒体开发和游戏软件开发的模块。
PyOpenGL
模块封装了“OpenGL应用程序编程接口”,通过该模块python程序员可在程序中集成2D和3D的图形。
NumPy、NumArray、SAGE
NumArray是Python的一个扩展库,主要用于处理任意维数的固定类型数组,简单说就是一个矩阵库。它的底层代码使用C来编写,所以速度的优势很明显。SAGE是基于NumPy和其他几个工具所整合成的数学软件包,目标是取代Magma, Maple, Mathematica和Matlab 这类工具。
MySQLdb
用于连接MySQL数据库。还有用于zope的ZMySQLDA模块,通过它就可在zope中连接mysql数据库。
Sqlite3
用于连接sqlite数据库。

Python-ldap
提供一组面向对象的API,可方便地在python中访问ldap目录服务,它基于OpenLDAP2.x。
smtplib
发送电子邮件。
ftplib
定义了FTP类和一些方法,用以进行客户端的ftp编程。如果想了解ftp协议的详细内容,请参考RFC959。
PyOpenCL
OpenCL的Python接口,通过该模块可以使用GPU实现并行计算。

‘柒’ python怎样做高斯拟合

需要载入numpy和scipy库,若需要做可视化还需要matplotlib(附加dateutil,pytz,pyparsing,cycler,setuptools库)。不画图就只要前两个。


如果没有这些库的话去 http://www.lfd.uci.e/~gohlke/pythonlibs/ 下载对应版本,之后解压到 C:Python27Libsite-packages。

importnumpyasnp
importpylabasplt
#importmatplotlib.pyplotasplt
fromscipy.optimizeimportcurve_fit
fromscipyimportasarrayasar,exp

x=ar(range(10))
y=ar([0,1,2,3,4,5,4,3,2,1])


defgaussian(x,*param):
returnparam[0]*np.exp(-np.power(x-param[2],2.)/(2*np.power(param[4],2.)))+param[1]*np.exp(-np.power(x-param[3],2.)/(2*np.power(param[5],2.)))


popt,pcov=curve_fit(gaussian,x,y,p0=[3,4,3,6,1,1])
printpopt
printpcov

plt.plot(x,y,'b+:',label='data')
plt.plot(x,gaussian(x,*popt),'ro:',label='fit')
plt.legend()
plt.show()

阅读全文

与pythongaussiankde相关的资料

热点内容
程序员女孩跳舞视频 浏览:554
linux默认java 浏览:426
如何看漫威漫画app 浏览:789
安卓手机如何按拼音排布app 浏览:721
java中exceptionin 浏览:882
java131 浏览:868
学英语不登录的app哪个最好 浏览:299
安卓的后台运行怎么设置 浏览:135
如何撰写论文摘要以及编译sci 浏览:416
安卓如何使用推特贴吧 浏览:429
怎样避免程序员入狱 浏览:856
苹果方块消除安卓叫什么 浏览:535
安卓世界征服者2怎么联机 浏览:297
国企招的程序员 浏览:969
哪个app可以看watch 浏览:518
dns备用什么服务器 浏览:1002
中达优控触摸屏编译失败 浏览:80
上海科纳压缩机 浏览:680
python工时系统 浏览:551
查好友ip命令 浏览:118