导航:首页 > 编程语言 > pythonnumpy详解

pythonnumpy详解

发布时间:2023-06-16 16:19:19

A. (python)numpy 常用操作

不放回取样:
从列表ori中不放回地取n个数

通过这种操作,我们可以获得一个二维列表的子集:
(如果这个二维列表是图的邻接矩阵,那么就是对图进行随机采样,获得一个图的子图)

首先要注意,"+" 操作对于list和numpy.array是完全不同的
python 中的list,"+"代表拼接:

在numpy.array中,"+"代表矩阵相加

keepdim指的是维度不变,常在sum中使用。如:

会发现,keepdim之后还是二维的

这里要注意,pytorch和numpy里max()函数的返回值是不同的
pytorch:

也就是说,max(1)代表求第一维的最大值,对于二维数组来说,就是求纵向的最大值,然后,第一个返回值是最大值所形成数组,第二个返回值是最大值所在的索引。这一个技巧在机器学习的分类任务中很常用,比如我们的分类任务是把数据分成m类,那么最终我们模型的输出是m维的,对于n个样本就是n*m,如果要判断我们的模型最终的分类结果,就是找n个样本里,每个样本m维输出的最大值索引,代表样本是这个类的可能性最大。我们可以方便地用这种方式找到最大值地索引:

其中test_out是模型输出,predict_y则是分类结果
另外一点要注意的是,numpy与pytorch不同,numpy的max()只有一个返回值:

也就是说,numpy.max()不会返回最大值所在的索引

B. python库numpy使用技巧(二)——随机抽取二维矩阵中多行或多列

使用库numpy

创建一个二维数组

行与列随机抽取类似

行随机抽取

列随机抽取

C. python基础之numpy.reshape详解

这个方法是在不改变数据内容的情况下,改变一个数组的格式,参数及返回值,官网介绍:

a:数组--需要处理的数据

newshape:新的格式--整数或整数数组,如(2,3)表示2行3列,新的形状应该与原来的形状兼容,即行数和列数相乘后等于a中元素的数量

order:

 首先做出翻译: order  : 可选范围为{‘C’, ‘F’, ‘A’}。使用索引顺序读取a的元素,并按照索引顺序将元素放到变换后的的数组中。如果不进行order参数的设置,默认参数为C。

(1)“C”指的是用类C写的读/索引顺序的元素,最后一个维度变化最快,第一个维度变化最慢。以二维数组为例,简单来讲就是横着读,横着写,优先读/写一行。

(2)“F”是指用FORTRAN类索引顺序读/写元素,最后一个维度变化最慢,第一个维度变化最快。竖着读,竖着写,优先读/写一列。注意,“C”和“F”选项不考虑底层数组的内存布局,只引用索引的顺序。

(3)“A”选项所生成的数组的效果与原数组a的数据存储方式有关,如果数据是按照FORTRAN存储的话,它的生成效果与”F“相同,否则与“C”相同。这里可能听起来有点模糊,下面会给出示例。

二、示例解释

1、首先随机生成一个4行3列的数组

2、使用reshape,这里有两种使用方法,可以使用np.reshape(r,(-1,1),order='F'),也可以使用r1=r.reshape((-1,1),order='F'),这里我选择使用第二种方法。通过示例可以观察不同的order参数效果。

通过例子可以看出来,F是优先对列信息进行操作,而C是优先行信息操作。如果未对r的格式进行设置,那么我们rashape的时候以“A”的顺序进行order的话,它的效果和“C”相同。

3、我们将r的存储方式进行修改,修改为类Fortan的方式进行存储。并做与第2步类似的操作。

基础操作样例:

1.引入numpy,名称为np 

2.接下来创建一个数组a,可以看到这是一个一维的数组 

3.使用reshape()方法来更改数组的形状,可以看到看数组d成为了一个二维数组

4.通过reshape生成的新数组和原始数组公用一个内存,也就是说,假如更改一个数组的元素,另一个数组也将发生改变 

5.同理还可以得到一个三维数组 

reshape(-1,1)什么意思:

大意是说,数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举例:

同理,只给定行数,newshape等于-1,Numpy也可以自动计算出新数组的列数。

D. python numpy有什么用

NumPyis the fundamental package for scientific computing withPython。就是科学计算包。

一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。

NumPy系统是Python的一种开源的数字扩展。这种工具可用来存储和处理矩阵,比Python自身的嵌套列表结构要高效。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

E. python numpy是什么库

NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!

相关推荐:《Python基础教程》

NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:

·一个强大的N维数组对象ndrray;

·比较成熟的(广播)函数库;

·用于整合C/C++和Fortran代码的工具包;

·实用的线性代数、傅里叶变换和随机数生成函数。

NumPy的优点:

·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;

·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;

·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。

当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。

F. 问一下Python里的numpy的正确读法是什么

numpy读法是:英['nʌmpi],NumPy是Python中科学计算的基础包。

它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学逻辑,形状操作,I / O离散傅立叶变换,随机模拟等等。

NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。

NumPy数组和标准Python序列之间有几个重要的区别:

1、NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。

2、NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。

3、NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。

4、越来越多的基于Python的科学和数学软件包正在使用NumPy数组;虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。

G. Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a

数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合

数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组

数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

H. Python中numpy.array函数有啥作用呢

答: 把我们定义的普通数组转化为山饥Numpy中的array类型,这样做的好处就在于可以使用该类型定义的多种数组方法,比如排序取其中的最大值或者最小值。我们就不需要从头开始实现,逗含返直接调用相老余关的API就行。

I. python关于numpy基础问题

Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包。
ndarray
ndarray(以下简称数组)是numpy的数组对象,需要注意的是,它是同构的,也就是说其中的所有元素必须是相同的类型。其中每个数组都有一个shape和dtype。
shape既是数组的形状,比如
复制代码
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
复制代码
其中(3, 4)即代表arr是3行4列的数组,其中dtype为float64
一下函数可以用来创建数组
array将输入数据转换为ndarray,类型可制定也可默认
asarray将输入转换为ndarray
arange类似内置range
ones、ones_like根据形状创建一个全1的数组、后者可以复制其他数组的形状
zeros、zeros_like类似上面,全0
empty、empty_like创建新数组、只分配空间
eye、identity创建对角线为1的对角矩阵
数组的转置和轴对称
转置是多维数组的基本运算之一。可以使用.T属性或者transpose()来实现。.T就是进行轴对换而transpose则可以接收参数进行更丰富的变换
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
复制代码
数组的运算
大小相等的数组之间做任何算术运算都会将运算应用到元素级别。
复制代码
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
复制代码
numpy的简单计算中,ufunc通用函数是对数组中的数据执行元素级运算的函数。
如:
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
复制代码
类似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等

阅读全文

与pythonnumpy详解相关的资料

热点内容
linuxcp拷贝文件 浏览:608
我的世界如何屏蔽别人服务器 浏览:907
单片机烧录员 浏览:970
美国数据服务器可以部署什么业务 浏览:973
如何卸载服务器中的ie 浏览:42
单片机必须学编程吗 浏览:153
如何判断是否与服务器连接数据库 浏览:740
吃甜食会缓解压力嘛 浏览:317
pdf魔鬼 浏览:29
二维数组递归解决算法问题 浏览:382
java反射例子 浏览:670
惠普笔记本自带解压软件 浏览:840
抖音视频后台压缩 浏览:707
app里的视频广告从哪里接的 浏览:556
天翼云服务器跟腾讯云 浏览:618
cyk算法实现 浏览:191
大潘号app在哪里可以下载 浏览:109
怎么做解压豌豆捏捏乐 浏览:618
安卓手机怎么调成苹果表情 浏览:755
android蓝牙声音 浏览:850