Ⅰ arm编程,c语言中嵌入汇编实现1+2+3+...+100
C语言中static关键字的常见用法及举例
在嵌入式系统开发中,目前使用的主要编程语言是C和汇编,
C++已经有相应的编译器,但是现在使用还是比较少的。在稍大
规模的嵌入式软件中,例如含有OS,大部分的代码都是用C编
写的,主要是因为C语言的结构比较好,便于人的理解,而且有
大量的支持库。尽管如此,很多地方还是要用到汇编语言,例如
开机时硬件系统的初始化,包括CPU状态的设定,中断的使能,
主频的设定,以及RAM的控制参数及初始化,一些中断处理方
面也可能涉及汇编。另外一个使用汇编的地方就是一些对性能非
常敏感的代码块,这是不能依靠C编译器的生成代码,而要手工
编写汇编,达到优化的目的。而且,汇编语言是和CPU的指令集
紧密相连的,作为涉及底层的嵌入式系统开发,熟练对应汇编语
言的使用也是必须的。
单纯的C或者汇编编程请参考相关的书籍或者手册,这里主要讨
论C和汇编的混合编程,包括相互之间的函数调用。下面分四种
情况来进行讨论,暂不涉及C++。
1. 在C语言中内嵌汇编
在C中内嵌的汇编指令包含大部分的ARM和Thumb指令,不过其
使用与汇编文件中的指令有些不同,存在一些限制,主要有下面
几个方面:
a. 不能直接向PC寄存器赋值,程序跳转要使用B或者BL指令
b. 在使用物理寄存器时,不要使用过于复杂的C表达式,避免物理寄存器冲突
c.
R12和R13可能被编译器用来存放中间编译结果,计算表达式值时可能将R0到R3、R12及R14用于子程序调用,因此要避免直接使用这些物理寄存器
d. 一般不要直接指定物理寄存器,而让编译器进行分配
内嵌汇编使用的标记是 __asm或者asm关键字,用法如下:
__asm
{
instruction [; instruction]
…
[instruction]
}
asm(“instruction [; instruction]”);
下面通过一个例子来说明如何在C中内嵌汇编语言,
#include
void my_strcpy(const char *src, char *dest)
{
char ch;
__asm
{
loop:
ldrb ch, [src], #1
strb ch, [dest], #1
cmp ch, #0
bne loop
}
}
int main()
{
char *a = "forget it and move on!";
char b[64];
my_strcpy(a, b);
printf("original: %s", a);
printf("ed: %s", b);
return 0;
}
在这里C和汇编之间的值传递是用C的指针来实现的,因为指针
对应的是地址,所以汇编中也可以访问。
2. 在汇编中使用C定义的全局变量
内嵌汇编不用单独编辑汇编语言文件,比较简洁,但是有诸多限
制,当汇编的代码较多时一般放在单独的汇编文件中。这时就需
要在汇编和C之间进行一些数据的传递,最简便的办法就是使用
全局变量。
/* cfile.c
* 定义全局变量,并作为主调程序
*/
#include
int gVar_1 = 12;
extern asmDouble(void);
int main()
{
printf("original value of gVar_1 is: %d", gVar_1);
asmDouble();
printf(" modified value of gVar_1 is: %d", gVar_1);
return 0;
}
对应的汇编语言文件
;called by main(in C),to double an integer, a global var defined in C
is used.
AREA asmfile, CODE, READONLY
EXPORT asmDouble
IMPORT gVar_1
asmDouble
ldr r0, =gVar_1
ldr r1, [r0]
mov r2, #2
mul r3, r1, r2
str r3, [r0]
mov pc, lr
END
3. 在C中调用汇编的函数
在C中调用汇编文件中的函数,要做的主要工作有两个,一是在
C中声明函数原型,并加extern关键字;二是在汇编中用
EXPORT导出函数名,并用该函数名作为汇编代码段的标识,最
后用mov pc, lr返回。然后,就可以在C中使用该函数了。从
C的角度,并不知道该函数的实现是用C还是汇编。更深的原因
是因为C的函数名起到表明函数代码起始地址的左右,这个和汇
编的label是一致的。
/* cfile.c
* in C,call an asm function, asm_strcpy
* Sep 9, 2004
*/
#include
extern void asm_strcpy(const char *src, char *dest);
int main()
{
const char *s = "seasons in the sun";
char d[32];
asm_strcpy(s, d);
printf("source: %s", s);
printf(" destination: %s",d);
return 0;
}
;asm function implementation
AREA asmfile, CODE, READONLY
EXPORT asm_strcpy
asm_strcpy
loop
ldrb r4, [r0], #1 ;address increment after read
cmp r4, #0
beq over
strb r4, [r1], #1
b loop
over
mov pc, lr
END
在这里,C和汇编之间的参数传递是通过ATPCS(ARM
Thumb Procere Call Standard)的规定来进行的。简单的说就
是如果函数有不多于四个参数,对应的用R0-R3来进行传递,多
于4个时借助栈,函数的返回值通过R0来返回。
4. 在汇编中调用C的函数
在汇编中调用C的函数,需要在汇编中IMPORT 对应的C函数名
,然后将C的代码放在一个独立的C文件中进行编译,剩下的工
作由连接器来处理。
;the details of parameters transfer comes from ATPCS
;if there are more than 4 args, stack will be used
EXPORT asmfile
AREA asmfile, CODE, READONLY
IMPORT cFun
ENTRY
mov r0, #11
mov r1, #22
mov r2, #33
BL cFun
END
/*C file, called by asmfile */
int cFun(int a, int b, int c)
{
return a + b + c;
}
在汇编中调用C的函数,参数的传递也是通过ATPCS来实现
的。需要指出的是当函数的参数个数大于4时,要借助stack,具
体见ATPCS规范
Ⅱ arm常用几个汇编语言的程序
一。从一数到十
COUNT EQU 0x30003100 ;定义变量COUNT的基地址 AREA Example1,CODE,READONLY;声明代码段Example1为只读 ENTRY ;标识程序入口
CODE32 ;声明32位ARM指令 START LDR R1,=COUNT ;将0X30003100赋给R1 MOV R0,#0 ;执行R0=0
STR R0,[R1] ;存储R0寄存器的数据到R1指向的存储单元 LOOP LDR R1,=COUNT ;将0X30003100赋给R1
LDR R0,[R1] ;将R1中的数值作为地址,取出此地址中的数据保存到R0中 ADD R0,R0,#1 ;执行R0=R0+1
CMP R0,#10 ;将R0与10进行比较
MOVHS R0,#0 ;若R0大于等于10,则R0=0
STR R0,[R1] ;存储R0寄存器的数据到R1指向的地址单元 B LOOP ;跳转到LOOP
END ;汇编文件结束
二,9的8次幂
X EQU 9 ;初始化X为9 n EQU 8 ;初始化N为8
AREA Example3,CODE,READONLY ;生明代码段Example3为只读 ENTRY ;标识程序入口路
CODE32 ;声明32位ARM指令
START LDR SP,=0x30003F00 ;把0x30003F00 赋给SP(R13) LDR R0,=X ;把9赋给R0 LDR R1,=n ;把8赋给R1
BL POW ;跳转到POW,并把下一条指令地址存入到R14中 HALT B HALT ;等待跳转
POW STMFD SP!,{R1-R12,LR} ;将R1-R12入栈,满递减堆栈 MOVS R2,R1 ;将R1赋给R2,并影响标志位 MOVEQ R0,#1 ;若Z=1,则R0=1
BEQ POW_END ;若Z=1,跳转到POW_END MOV R1,R0 ;将R0中值赋给R1 SUB R2,R2,#1 ;将R2-1的只赋给R2 POW_L1 BL DO_MUL ;跳转到DO-MUL,并把下一条指令地址存入R14中 SUBS R2,R2,#1 ;将R2-1的值赋给R2,并影响标志位 BNE POW_L1 ;若Z=0,跳转到POW_L1
POW_END LDMFD SP!,{R1-R12,PC} ;数据出栈,存入到R1-R12,PC中 DO_MUL MUL R0,R1,R0 ;把R1*R0的值赋给R0 MOV PC,LR ;LR中的值赋给PC END ;汇编结束
三:从一一直加到一百
程序清单(一) C 语言实验参考程序
#define uint8 unsigned char ;定义一个无符号字符常量uint8 #define uint32 unsigned int ;定义一个无符号整型常量unint32
#define N 100 ;定义一个常量N=100(宏定义,100用N代替) uint32 sum; ;定义sum为无符号整型常量(声明一个unsigned int型的变量sum) void Main(void) ;主函数
{uint32 i; ;定义无符号整型常量i(声明一个unsigned int型的变量i) sum=0; ;sum初始值为0
for(i=0;i<=N;i++) ;i在N内自增加1(i从0开始,i<=N时循环成立) {sum+=i;} ;把sum+i赋给sum while(1); ;为真循环 }
程序清单(二) 简单的启动代码
IMPORT |Image$$RO$$Limit | ;R0输出段存储区域界线 IMPORT |Image$$RW$$Base | ;RW输出段运行时起始地址 IMPORT |Image$$ZI$$Base | ;ZI输出段运行时起始地址 IMPORT |Image$$ZI$$Limit | ;ZI输出段存储区域界线 IMPORT Main ;主函数
AREA Start,CODE,READONLY ;声明代码段start,为只读 ENTRY ;程序入口
CODE32 ;声明32位ARM指令 Reset LDR SP,=0x40003f00 ;将0x40003f00赋给SP
LDR R0,=|Image$$RO$$Limit| ;将R0输出段存储区域界线赋给R0 LDR R1,=|Image$$RW$$Base | ;将RW输出段运行时起始地址赋给R1 LDR R3,=|Image$$ZI$$Base | ;将ZI输出段运行时起始地址赋给R3 CMP R0,R1 ;比较R0和R1,相等Z=1,反之Z=0 BEQ LOOP1 ;若Z=1,则跳到LOOP1
LOOP0 CMP R1,R3 ;比较R1和R3,若R1<r3,c=0
LDRCC R2,[R0],#4 ;若C=0,读取R0地址单元内容并且存入R2,且R0=R0+4 STRCC R2,[R1],#4 ;若C=0,读取R2中的数据存入R1,且R1=R1+4 BCC LOOP0 ;若C=0,跳转到LOOP0
LOOP1 LDR R1,=|Image$$ZI$$Limit| ;将ZI输出段存储区域赋给R1 MOV R2,#0 ;把0赋给R2
LOOP2 CMP R3,R1 ;比较R1和R3,若R1<r3,c=0 strcc="" r2,[r3],#4="" ;若c="0,将R2中数据保存到内存单元R3中,且R3=R3+4" bcc="" loop2="" b="" main="" ;跳转到主程序="" end="" ;汇编结束=""
四、程序清单(一) C 语言调用汇编的参考程序
#define uint8 unsigned char ;定义一个无符号字符常量uint8 #define uint32 unsigned int ;定义一个无符号整型常量.uint32
extern uint32 Add(uint32 x,uint32 y); //声明子程序Add为一个无符号整型常量,它为2个无符号整型常量x,y的和
uint32 sum; ;定义sum为无符号整型常量 void Main(void) ;无返回主程序
{sum=Add(555,168); ;sum等于555+168 while(1); ;为真循环 }
程序清单(二) 汇编加法函数程序
EXPORT Add ;声明子程序Add方便调用 AREA Start,CODE,READONLY ;声明代码段start,为只读 ENTRY ;程序入口
CODE32 ;声明32位ARM指令
Add ADD R0,R0,R1 ;将R0+R1值赋给R0 MOV PC,LR ;将LR值赋给PC