‘壹’ java分布式架构有哪些技术
既然是分布式系统,系统间通信的技术就不可避免的要掌握。
首先,我们必须掌握一些基本知识,例如网络通信协议(例如TCP / UDP等),网络IO(Blocking-IO,NonBlocking-IO,Asyn-IO),网卡(多队列等)。 了解有关连接重用,序列化/反序列化,RPC,负载平衡等的信息。
在学习了这些基本知识之后,您基本上可以在分布式系统中编写一个简单的通信模块,但这实际上还远远不够。 现在,您已经进入了分布式字段,您已经对规模有很多要求。 这意味着需要一种通信程序,该程序可以支持大量连接,高并发性和低资源消耗。
大量的连接通常会有两种方式:
大量client连一个server
当前在NonBlocking-IO非常成熟的情况下,支持大量客户端的服务器并不难编写,但是在大规模且通常是长连接的情况下,有一点需要特别注意 ,即服务器挂起时不可能所有客户端都在某个时间点启动重新连接。 那基本上是一场灾难。 我见过一些没有经验的类似案例。 客户端规模扩大后,服务器基本上会在重新启动后立即刷新。 大量传入连接中断(当然,服务器的积压队列首先应设置为稍大一些)。 可以使用的通常方法是在客户端重新连接之前睡眠一段随机的时间。 另外,重连间隔采用避让算法。
一个client连大量的server
有些场景也会出现需要连大量server的现象,在这种情况下,同样要注意的也是不要并发同时去建所有的连接,而是在能力范围内分批去建。
除了建连接外,另外还要注意的地方是并发发送请求也同样,一定要做好限流,否则很容易会因为一些点慢导致内存爆掉。
这些问题在技术风险上得考虑进去,并在设计和代码实现上体现,否则一旦随着规模上去了,问题一时半会还真不太好解。
高并发这个点需要掌握CAS、常见的lock-free算法、读写锁、线程相关知识(例如线程交互、线程池)等,通信层面的高并发在NonBlocking-IO的情况下,最重要的是要注意在整体设计和代码实现上尽量减少对io线程池的时间占用。
低资源消耗这点的话NonBlocking-IO本身基本已经做到。
伸缩性
分布式系统基本上意味着规模不小。 对于此类系统,在设计时必须考虑可伸缩性。 在体系结构图上绘制的任何点,如果请求量或数据量继续增加,该怎么办? 通过添加机器来解决。 当然,此过程不需要考虑无限的情况。 如果您有经验的建筑师,从相对较小的规模到非常大型的范围,那么优势显然并不小,而且它们也将越来越稀缺。 。
横向可扩展性(Scale Out)是指通过增加服务器数量来提高群集的整体性能。 垂直可伸缩性(Scale Up)是指提高每台服务器的性能以提高集群的整体性能。 纵向可扩展性的上限非常明显,而分布式系统则强调水平可伸缩性。
分布式系统应用服务最好做成无状态的
应用服务的状态是指运行时程序因为处理服务请求而存在内存的数据。分布式应用服务最好是设计成无状态。因为如果应用程序是有状态的,那么一旦服务器宕机就会使得应用服务程序受影响而挂掉,那存在内存的数据也就丢失了,这显然不是高可靠的服务。把应用服务设计成无状态的,让程序把需要保存的数据都保存在专门的存储上(eg. 数据库),这样应用服务程序可以任意重启而不丢失数据,方便分布式系统在服务器宕机后恢复应用服务。
伸缩性的问题围绕着以下两种场景在解决:
无状态场景
对于无状态场景,要实现随量增长而加机器支撑会比较简单,这种情况下只用解决节点发现的问题,通常只要基于负载均衡就可以搞定,硬件或软件方式都有;
无状态场景通常会把很多状态放在db,当量到一定阶段后会需要引入服务化,去缓解对db连接数太多的情况。
有状态场景
所谓状态其实就是数据,通常采用Sharding来实现伸缩性,Sharding有多种的实现方式,常见的有这么一些:
2.1 规则Sharding
基于一定规则把状态数据进行Sharding,例如分库分表很多时候采用的就是这样的,这种方式支持了伸缩性,但通常也带来了很复杂的管理、状态数据搬迁,甚至业务功能很难实现的问题,例如全局join,跨表事务等。
2.2 一致性Hash
一致性Hash方案会使得加机器代价更低一些,另外就是压力可以更为均衡,例如分布式cache经常采用,和规则Sharding带来的问题基本一样。
2.3 Auto Sharding
Auto Sharding的好处是基本上不用管数据搬迁,而且随着量上涨加机器就OK,但通常Auto Sharding的情况下对如何使用会有比较高的要求,而这个通常也就会造成一些限制,这种方案例如HBase。
2.4 Copy
Copy这种常见于读远多于写的情况,实现起来又会有最终一致的方案和全局一致的方案,最终一致的多数可通过消息机制等,全局一致的例如zookeeper/etcd之类的,既要全局一致又要做到很高的写支撑能力就很难实现了。
即使发展到今天,Sharding方式下的伸缩性问题仍然是很大的挑战,非常不好做。
上面所写的基本都还只是解决的方向,到细节点基本就很容易判断是一个解决过多大规模场景问题的架构师,:)
稳定性
作为分布式系统,必须要考虑清楚整个系统中任何一个点挂掉应该怎么处理(到了一定机器规模,每天挂掉一些机器很正常),同样主要还是分成了无状态和有状态:
无状态场景
对于无状态场景,通常好办,只用节点发现的机制上具备心跳等检测机制就OK,经验上来说无非就是纯粹靠4层的检测对业务不太够,通常得做成7层的,当然,做成7层的就得处理好规模大了后的问题。
有状态场景
对于有状态场景,就比较麻烦了,对数据一致性要求不高的还OK,主备类型的方案基本也可以用,当然,主备方案要做的很好也非常不容易,有各种各样的方案,对于主备方案又觉得不太爽的情况下,例如HBase这样的,就意味着挂掉一台,另外一台接管的话是需要一定时间的,这个对可用性还是有一定影响的;
全局一致类型的场景中,如果一台挂了,就通常意味着得有选举机制来决定其他机器哪台成为主,常见的例如基于paxos的实现。
可维护性
维护性是很容易被遗漏的部分,但对分布式系统来说其实是很重要的部分,例如整个系统环境应该怎么搭建,部署,配套的维护工具、监控点、报警点、问题定位、问题处理策略等等。
‘贰’ java搭建分布式集群项目大概需要多少台服务器
超过一台都可以叫集群,只有一台也可以算分布式,需要多少台服务器,主要看你的项目有多少模块,需要多高的性能。没有什么硬性要求,不用纠结
‘叁’ 目前主流的Java分布式框架有哪些,学起来难不难
Java前景是很不错的,像Java这样的专业还是一线城市比较好,师资力量跟得上、就业的薪资也是可观的,学习Java可以按照路线图的顺序,
0基础学习Java是没有问题的,关键是找到靠谱的Java培训机构,你可以深度了解机构的口碑情况,问问周围知道这家机构的人,除了口碑再了解机构的以下几方面:
1. 师资力量雄厚
要想有1+1>2的实际效果,很关键的一点是师资队伍,你接下来无论是找个工作还是工作中出任哪些的人物角色,都越来越爱你本身的技术专业java技术性,也许的技术专业java技术性则绝大多数来自你的技术专业java教师,一个好的java培训机构必须具备雄厚的师资力量。
2. 就业保障完善
实现1+1>2效果的关键在于能够为你提供良好的发展平台,即能够为你提供良好的就业保障,让学员能够学到实在实在的知识,并向java学员提供一对一的就业指导,确保学员找到自己的心理工作。
3. 学费性价比高
一个好的Java培训机构肯定能给你带来1+1>2的效果,如果你在一个由专业的Java教师领导并由Java培训机构自己提供的平台上工作,你将获得比以往更多的投资。
希望你早日学有所成。
‘肆’ 什么是分布式感谢分享,百度能搜到的概念性的东西就不要贴了 java开发的web网站怎么实现分布式
分布式概念还是简单的吧,主要是理解为什么要分布式,和分布式主要做什么。
首先分布式的主要作用有以下几点:
1、提高应用的可用性:服务器要保持长时间能够有效的使用,但是现实情况又是很不稳定的,例如电脑会死机,会断电,硬件设备会损坏,使用分布式可以一定程度的解决这些问题。
2、分散服务器运行压力,这本身也是提高应用可用性的一个方面,例如你的应用功能很多,逻辑很复杂,或者操作的数据量较大,单个应用或者机器难以甚至无法处理你的业务,那么就需要使用分布式。
分布式的概念其实也很简单,就是一个应用做不了或者难以做的事情,让多个应用去做,这就好比让一个人去完成的事情让多个人去完成,举个现实中很简单的例子,例如造车,造车这个工作本身一个造车厂可以完成这个任务,只是一个工厂造车,成本、技术、人员等等都会提高制作成本,而且因为技术过于驳杂,一个厂能造,但是成本和难度都会增加,但是拆分给多个厂来造车,例如一个厂造发动机,一个厂造底盘,一个厂造外壳,一个厂做电子仪表盘等等,把各个配件分散给不同的厂制作,这样每个厂专心做自己更专业的事情,这样既降低了成本,有提高了工作效率。
回到我们的web应用,一般来说,一个系统就是一个应用,系统里面有各种功能,例如学生信息管理系统,系统里面包含各种功能,例如用户登录和认证、权限配置和授权、学生信息的管理、学生的入学管理、学生的毕业管理、校友信息管理等等各种功能,但是当学生的数量特别多,内部业务逻辑特别复杂的时候,一个应用可能不能够承担起这个系统的正常运转,那么就可以考虑分布式,来使用多个应用完成这个系统的功能,例如做一个应用负责登录认证模块,一个应用处理授权的功能,另外一个应用处理学生信息的内容等等。
总结分布式,其实就是一个应用的事情让多个应用来解决,分布式是应用级别的分工,在一台机器的多个应用,我们叫垂直分布式,在多台机器上的分布式叫水平分布式,在一台机器的分布式实现起来比较简单,只需要实现应用之间的内存数据共享即可,内存数据共享方式很多,可以使用共享文件等等方式,多台机器的分布式就需要借助网络通信来共享数据,如果是通语言同技术的应用,可以直接共享内存数据,如果是不同语言的分布式应用,就需要参照一些通用传输协议的数据,例如xml json。