导航:首页 > 编程语言 > 遗传算法java实现

遗传算法java实现

发布时间:2023-07-07 19:02:27

‘壹’ 使用java来实现在智能组卷中的遗传算法(急急急)

题目好像是让你做个增强版的List ,简单的都实现了 程序架子大概是这样,排序查找什么的网络搜下 算法很多,套着每样写个方法就行了,测试就在main‘方法里写

publicclassMyList{
privateString[]arr;
privateintcount;
publicMyList(intcount){
arr=newString[count];
this.count=count;
}
publicMyList(int[]intArr){
arr=newString[intArr.length];
this.count=intArr.length;
for(inti=0;i<intArr.length;i++){
arr[i]=intArr[i]+"";
}
}

publicMyList(String[]stringArr){
arr=stringArr;
this.count=stringArr.length;
}
publicintgetLength(){
returncount;
}
//清空容器内的数组。
publicvoidclearAll(){
arr=newString[count];
}
//通过给定元素下标来删除某一元素
publicvoidremoveBySeqn(intseqn){
if(seqn>=0&&seqn<count){
arr[seqn]=null;
}
}
publicstaticvoidmain(String[]args){
MyListlist=newMyList(40);
MyListlist1=newMyList({3,2,125,56,123});
MyListlist2=newMyList({"123",""ad});
list2.removeBySeqn(0);
list1.clearAll();
}
}

‘贰’ 遗传算法的模拟 数据结构题目

我这里给出了一个简单的模板如果需要编代码填代码的地方已经有提示了
/*package otherFile;

import java.util.Random;
import tGraph.TdcppGraph;
import shuffP.*;
*/
/**************
*
* @author vaqeteart
* 这里是遗传算法的核心框架遗传算法的步骤:
* 遗传算法核心部分的算法描述
* 算法步骤:
* 1、初始化
* 1.1、生成初始种群编码
* 1.2、计算每个个体的适配值。
* 1.3、记录当前最优适配值和最优个体
* 2、选择和遗传,
* 2.0、若当前最优适配值多次小于已有的最优适配值(或相差不大)很多次,或者进化的次数超过设定的限制,转4。
* 2.1、按照与每个个体的适配值成正比的概率选择个体并复制,复制之后个体的数目和原始种群数目一样。
* 2.2、(最好先打乱复制后种群的个体次序)对复制后个体进行两两配对交叉,生成相同数目的的下一代种群。
* 2.3、对下一代种群按照一定的概率进行变异
* 2.4、计算每个个体的适配值。
* 2.5、记录当前最优适配值和最优个体
* 2.6、转2
* 3、返回当前最优适配值以及其对应的编码,结束。
*
* 注意:
* 1.这里的内容相当于一个模板,编写具体的遗传算法的时候,可以按照这个模板的形式编写。
* 2.应该填写代码的地方都有提示的标记。
*/

public class GAKernel
{
//number of population
int popNum;//set the number to 20 in constructor
//current evolution times
int evolutionTim;
//limit of the evolution times
int evolutionLim;//set the number to 20 in constructor
//unaccepted times
//int eliminTim;
//limit of unaccepted times
//int eliminLim;
//current best euler code
//int curBestCode[];
//current best fitness
int curBestFitness;
//fitness of every indivial
int iFitness[];
//fator of compute the fitness
int factor;
//..................other members.............................................

//the graph
//public TdcppGraph tpGraph;
//the eula code group
//int codes[][];
//every population
//
//constructor
GAKernel(TdcppGraph tG,int eulerCode[])
{
popNum = 32;//2*2*2*2*2
//factor = Integer.MAX_VALUE / popNum;//to avoid overflow when select,for every fitness
evolutionTim = 0;/////
evolutionLim = 15;///////
//this.tpGraph=new TdcppGraph(tG);
//eliminTim = 0;
//eliminLim
curBestFitness = 0;
//curBestCode = new int[eulerCode.length];
//for(int i = 0; i < curBestCode.length; ++i)
//{
// curBestCode[i] = eulerCode[i];
//}
//??curBestFitness
iFitness = new int[popNum];
//codes = new int[popNum][];//lines
for(int i = 0; i < popNum; ++i)
{
//codes[i] = new int[eulerCode.length];
iFitness[i] = 0;
}
System.out.println("构造函数,需要填入代码");
}
//initialize the originalpopulation
void initPopulation()
{
//.......................初始化种群........................................
//int tmpCode[] = new int[curBestCode.length];
//get the initial indivial
//for(int i = 0; i < curBestCode.length; ++i)
//{
// tmpCode[i] = curBestCode[i];
// codes[0][i] = tmpCode[i];
//}
//ShuffEP s = new ShuffEP(this.tpGraph);
//for(int i = 1; i < popNum; ++i)
//{
// s.shuff(tmpCode);
// for(int j = 0; j < tmpCode.length; ++j)
// {
// codes[i][j] = tmpCode[j];
// }
//}
System.out.println("初始化种群,需要填入代码");
//get the initial fitness to the member iFitness
computeFitness();
//get the initial best indivial and fitness
recordBest();
}
//compute the fitness of every indivial in current population
void computeFitness()
{
//........................计算每个个体适应度.......................
//int time = 0;
//for(int i = 0; i < popNum; ++i)
//{
// time = 0;
// for(int j = 0; j < codes[i].length - 1; ++j)
// {
// time += tpGraph.Edge(codes[i][j], codes[i][j + 1]).getCost(time);
// }
// iFitness[i] = factor - time;
// if(iFitness[i] < 0)
// {
// System.out.println("错误,某个个体适应度过小使得适配值出现负数");//lkdebug
// System.exit(1);
// }
//}
System.out.println("计算每个个体适应度,需要填入代码");
}
//record the current best fitness and the according indivial
void recordBest()
{
int bestIndex = -1;
for(int i = 0; i < popNum; ++i)
{
if(curBestFitness < iFitness[i])
{
curBestFitness = iFitness[i];
bestIndex = i;
}
}
//............................记录最优个体.............................
if(bestIndex > -1)
{
// for(int i = 0; i < curBestCode.length; ++i)
// {
// curBestCode[i] = codes[bestIndex][i];
// }
}
System.out.println("记录最优个体,需要填入代码");
}
//selection and reproce indivial in population
void selIndivial()
{
int tmpiFitness[] = new int[iFitness.length];
tmpiFitness[0] = iFitness[0];
//建立临时群体用于选择交换
//.................................复制个体...............................
//清除原来的群体
//int tmpCode[][] = new int[popNum][];
//for(int i = 0; i < codes.length; ++i)
//{
// tmpCode[i] = new int[codes[i].length];//???
// for(int j = 0; j < codes[i].length; ++j)
// {// to tmpCode and reset codes
// tmpCode[i][j] = codes[i][j];
// codes[i][j] = -1;
// }
//}
System.out.println("复制个体,需要填入代码");
for(int i = 1; i < tmpiFitness.length; ++i)
{
tmpiFitness[i] = tmpiFitness[i - 1] + iFitness[i];
//iFitness[i] = 0;
}
//轮盘赌选择个体
for(int i = 0; i < popNum; ++i)
{
int rFit = new Random().nextInt(tmpiFitness[tmpiFitness.length - 1]);
for(int j = 0; j < tmpiFitness.length; ++j)
{
if(rFit < tmpiFitness[j])
{
rFit = j;//record the index of the indivial
break;
}
}
if(rFit == 0)
{
iFitness[i] = tmpiFitness[rFit];
}
else
{
iFitness[i] = tmpiFitness[rFit] - tmpiFitness[rFit - 1];// fitness
}
//....................................选择个体...........................
//for(int j = 0; j < tmpCode[rFit].length; ++j)
//{
// codes[i][j] =tmpCode[rFit][j];
//}
System.out.println("选择个体,需要填入代码");
}
//get the copied fitness in iFitness
}
//match every two indivial and cross the code
void matchCross()
{
//........................需要填入代码................................
System.out.println("配对交叉,需要填入代码");
}
//mutate by a specifical probability
void mutate()
{
//........................按照一定的概率进行变异.......................
System.out.println("按照一定的概率进行变异,需要填入代码");
}
//evolve current population
void evolve()
{
selIndivial();
matchCross();
mutate();
}
//compute the approximative best value by GA
//find approximative best solution by GA
public void compute()
{
initPopulation();
//while((evolutionTim < evolutionLim) && (eliminTim < eliminLim))
while(evolutionTim < evolutionLim)
{
evolve();
//get the initial fitness to the member iFitness
computeFitness();
//get the initial best indivial and fitness
recordBest();
++evolutionTim;
}
}
}

‘叁’ 优化算法笔记(六)遗传算法

遗传算法(Genetic Algorithms,GA)是一种模拟自然中生物的遗传、进化以适应环境的智能算法。由于其算法流程简单,参数较少优化速度较快,效果较好,在图像处理、函数优化、信号处理、模式识别等领域有着广泛的应用。
在遗传算法(GA)中,每一个待求问题的候选解被抽象成为种群中一个个体的基因。种群中个体基因的好坏由表示个体基因的候选解在待求问题中的所的得值来评判。种群中的个体通过与其他个体交叉产生下一代,每一代中个体均只进行一次交叉。两个进行交叉的个体有一定几率交换一个或者多个对应位的基因来产生新的后代。每个后代都有一定的概率发生变异。发生变异的个体的某一位或某几位基因会变异成其他值。最终将以个体的适应度值为概率选取个体保留至下一代。

遗传算法启发于生物的繁殖与dna的重组,本次的主角选什么呢?还是根据大家熟悉的孟德尔遗传规律选豌豆吧,选动物的话又会有人疑车,还是植物比较好,本次的主角就是它了。

遗传算法包含三个操作(算子):交叉,变异和选择操作。下面我们将详细介绍这三个操作。
大多数生物的遗传信息都储存在DNA,一种双螺旋结构的复杂有机化合物。其含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶。

表格中表示了一个有10个基因的个体,它们每一个基因的值为0或者1。

生物的有性生殖一般伴随着基因的重组。遗传算法中父辈和母辈个体产生子代个体的过程称为交叉。

表中给出了两个豌豆的基因,它们均有10个等位基因(即编号相同的基因)。
遗传算法的交叉过程会在两个个体中随机选择1位或者n位基因进行交叉,即这两个个体交换等位基因。
如,A豌豆和B豌豆在第6位基因上进行交叉,则其结果如下

当两个个体交叉的等位基因相同时,交叉过程也有可能没有产生新的个体,如交叉A豌豆和B豌豆的第2位基因时,交叉操作并没有产生新的基因。

一般的会给群体设定一个交叉率,crossRate,表示会在群体中选取一定比例的个体进行交叉,交叉率相对较大,一般取值为0.8。

基因的变异是生物进化的一个主要因素。
遗传算法中变异操作相对简单,只需要将一个随机位基因的值修改就行了,因为其值只为0或1,那么当基因为0时,变异操作会将其值设为1,当基因值为1时,变异操作会将其值设为0。

上图表示了A豌豆第3位基因变异后的基因编码。
与交叉率相似,变异操作也有变异率,alterRate,但是变异率会远低于交叉率,否则会产生大量的随机基因。一般变异率为0.05。

选择操作是遗传算法中的一个关键操作,它的主要作用就是根据一定的策略随机选择个体保留至下一代。适应度越优的个体被保留至下一代的概率越大。
实现上,我们经常使用“轮盘赌”来随机选择保留下哪个个体。

假设有4个豌豆A、B、C、D,它们的适应度值如下:

适应度值越大越好,则它们组成的轮盘如下图:

但由于轮盘赌选择是一个随机选择过程,A、B、C、D进行轮盘赌选择后产生的下一代也有可能出现A、A、A、A的情况,即虽然有些个体的适应度值不好,但是运气不错,也被选择留到了下一代。
遗产算法的三个主要操作介绍完了,下面我们来看看遗传算法的总体流程:

前面我们说了遗传算法的流程及各个操作,那么对于实际的问题我们应该如何将其编码为基因呢?

对于计算机来所所有的数据都使用二进制数据进行存放,如float类型和double类型的数据。
float类型的数据将保存为32位的二进制数据:1bit(符号位) 8bits(指数位) 23bits(尾数位)
如-1.234567f,表示为二进制位

Double类型的数据将保存为64位的二进制数据:1bit(符号位) 11bits(指数位) 53bits(尾数位)
如-1.234567d,表示为二进制为

可以看出同样的数值不同的精度在计算机中存储的内容也不相同。之前的适应度函数 ,由于有两个double类型的参数,故其进行遗传算法基因编码时,将有128位基因。
虽然基因数较多,但好在每个基因都是0或者1,交叉及变异操作非常简单。

相比二进制编码,十进制编码的基因长度更短,适应度函数 有两个输入参数,那么一个个体就有2个基因,但其交叉、变异操作相对复杂。
交叉操作
方案1:将一个基因作为一个整体,交换两个个体的等位基因。
交换前

交换第1位基因后

方案2:将两个个体的等位基因作为一个整体,使其和不变,但是值随机
交换前

交换第1位基因后

假设A、B豌豆的第一位基因的和为40,即 ,第一位基因的取值范围为0-30,那么A、B豌豆的第一位基因的取值范围为[10,30],即 为[0,30]的随机数, 。
变异操作,将随机的一位基因设置为该基因取值范围内的随机数即可。

这个过程说起来简单但其实现并不容易。

我们要将它们的值映射到一个轴上才能进行随机选择,毕竟我们无法去绘制一个轮盘来模拟这个过程

如图,将ABCD根据其值按顺序排列,取[0,10]内的随机数r,若r在[0,1]内则选择A,在(1,3]内则选择B,在(3,6]内则选择C,在(6,10]则选择D。
当然这仍然会有问题,即当D>>A、B、C时,假如它们的值分布如下

那么显然,选D的概率明显大于其他,根据轮盘赌的选择,下一代极有可能全是D的后代有没有办法均衡一下呢?
首先我想到了一个函数,

不要问我为什么我不知道什么是神经什么网络的,什么softmax、cnn统统没听说过。

这样一来,它们之间的差距没有之前那么大了,只要个体适应度值在均值以上那么它被保留至下一代的概率会相对较大,当然这样缩小了个体之间的差距,对真正优秀的个体来说不太公平,相对应,我们可以在每次选择过程中保留当前的最优个体到下一代,不用参与轮盘赌这个残酷的淘汰过程。

最令人高兴的环节到了,又可以愉快的凑字数了。

由于遗传算法的收敛速度实在是太慢,区区50代,几乎得不到好的结果,so我们把它的最大迭代次数放宽到200代。

使用二进制编码来进行求解
参数如下:

求解过程如上图,可以看出基因收敛的很快,在接近20代时就图中就只剩一个点了,之后的点大概是根据变异操作产生。看一下最后的结果。

可以看出最好的结果已经得到了最优解,但是10次实验的最差值和平均值都差的令人发指。为什么会这样呢?

问题出在二进制编码上,由于double类型的编码有11位指数位和52位小数位,这会导致交叉、变异操作选到指数位和小数位的概率不均衡,在小数位上的修改对结果的影响太小而对指数为的修改对结果的影响太大,
如-1.234567d,表示为二进制为

对指数为第5位进行变异操作后的结果为-2.8744502924382686E-10,而对小数位第5为进行变异操作后的结果为-1.218942。可以看出这两部分对数值结果的影响太不均衡,得出较好的结果时大概率是指数位与解非常相近,否则很难得出好的结果,就像上面的最差值和均值一样。
所以使用上面的二进制编码不是一个好的基因编码方式,因此在下面的实验中,将使用十进制来进行试验。

使用:十进制编码来进行求解
参数如下:

我们可以看到直到40代时,所有的个体才收束到一点,但随后仍不断的新的个体出现。我们发现再后面的新粒子总是在同一水平线或者竖直线上,因为交叉操作直接交换了两个个体的基因,那么他们会相互交换x坐标或者y坐标,导致新个体看起来像在一条直线上。
我们来看看这次的结果。

这次最优值没有得到最优解,但是最差值没有二进制那么差,虽然也不容乐观。使用交换基因的方式来进行交叉操作的搜索能力不足,加之轮盘赌的选择会有很大概率选择最优个体,个体总出现在矩形的边上。
下面我们先改变轮盘赌的选择策略,使用上面的sigmod函数方案,并且保留最优个体至下一代。

使用:十进制编码来进行求解
参数如下:

看图好像跟之前的没什么区别,让我们们看看最终的结果:

可以看出,最优值没有什么变化,但是最差值和平均值有了较大的提升,说明该轮盘赌方案使算法的鲁棒性有了较大的提升。在每次保留最优个体的情况下,对于其他的个体的选择概率相对平均,sigmod函数使得即使适应度函数值相差不太大的个体被选到的概率相近,增加了基因的多样性。

使用:十进制编码来进行求解,改变交叉方案,保持两个个体等位基因和不变的情况下随机赋值。
参数如下:

上图可以看出该方案与之前有明显的不同,在整个过程中,个体始终遍布整个搜索空间,虽然新产生的个体大多还是集中在一个十字架型的位置上,但其他位置的个体比之前的方案要多。
看看结果,

这次的结果明显好于之前的所有方案,但仍可以看出,十进制的遗传算法的精度不高,只能找到最优解的附近,也有可能是算法的收敛速度实在太慢,还没有收敛到最优解。

遗传算法的探究到此也告一段落,在研究遗传算法时总有一种力不从心的感觉,问题可能在于遗传算法只提出了一个大致的核心思想,其他的实现细节都需要自己去思考,而每个人的思维都不一样,一万个人能写出一万种遗传算法,其实不仅是遗传算法,后面的很多算法都是如此。
为什么没有对遗传算法的参数进行调优,因为遗传算法的参数过于简单,对结果的影响的可解释性较强,意义明显,实验的意义不大。

遗传算法由于是模仿了生物的进化过程,因此我感觉它的求解速度非常的慢,而且进化出来的结果不一定是最适应环境的,就像人的阑尾、视网膜结构等,虽然不是最佳的选择但是也被保留到了今天。生物的进化的随机性较大,要不是恐龙的灭绝,也不会有人类的统治,要不是人类有两只手,每只手有5根手指,也不会产生10进制。
以下指标纯属个人yy,仅供参考

目录
上一篇 优化算法笔记(五)粒子群算法(3)
下一篇 优化算法笔记(七)差分进化算法

优化算法matlab实现(六)遗传算法matlab实现

‘肆’ 基本遗传算法介绍

遗传算法是群智能优化计算中应用最为广泛、最为成功、最具代表性的智能优化方法。它是以达尔文的生物进化论和孟德尔的遗传变异理论为基础,模拟生物进化过程和机制,产生的一种群体导向随机搜索技术和方法。

遗传算法的基本思想:首先根据待求解优化问题的目标函数构造一个适应度函数。然后,按照一定的规则生成经过基因编码的初始群体,对群体进行评价、遗传运算(交叉和变异)、选择等操作。经过多次进化,获得适应度最高的一个或几个最优个体作为问题的最优解。

编码是对问题的可行解的遗传表示,是影响算法执行效率的关键因素的之一。遗传算法中,一个解 称为个体或染色体(chromosome),染色体由被称为基因(gene)的离散单元组成,每个基因控制颜色体的一个或多个特性,通常采用固定长度的0-1二进制编码,每个解对应一个唯一的二进制编码串编码空间中的二进制位串称为基因型(genotype)。而实际所表示问题的解空间的对应点称为表现型(phenotype)。

种群由个体构成,每个个体的染色体对应优化问题的一个初始解。

适应度函数是评价种群中个体对环境适应能力的唯一确定性指标,体现出“适者生存,优胜劣汰”这一自然选择原则。

遗传算法在每次迭代过程中,在父代种群中采用某种选择策略选择出指定数目的哥特体提进行遗传操作。最常用的选择策略是正比选择(proportional selection)策略。

在 交叉算子中,通常由两个被称为父代(parent)的染色体组合,形成新的染色体,称为子代(offspring)。父代是在种群中根据个体适应度进行选择,因此适应度较高的染色体的基因更有可能被遗传到下一代 。通过在迭代过程中不断地应用交叉算子,使优良个体的基因得以在种群中频繁出现,最终使得整个种群收敛到一个最优解。

在染色体交叉之后产生的子代个体,其基因位可能以很小的概率发生转变,这个过程称为变异。变异是为了增强种群的多样性,将搜索跳出局部最优解。

遗传算法的停止准则一般采用设定最大迭代次数或适应值函数评估次数,也可以是规定的搜索精度。

已Holland的基本GA为例介绍算法等具体实现,具体的执行过程描述如下:

Step 1: 初始化 。随机生成含有 个个体的初始种群 ,每个个体经过编码对应着待求解优化问题的一个初始解。

Step 2: 计算适应值 。个体 ,由指定的适应度函数评价其适应环境的能力。不同的问题,适应度函数的构造方式也不同。对函数优化问题,通常取目标函数作为适应度函数。

Step 3: 选择 。根据某种策略从当前种群中选择出 个个体作为重新繁殖的下一代群体。选择的依据通常是个体的适应度的高低,适应度高的个体相比适应度低的个体为下一代贡献一个或多个后代的概率更大。选择过程提现了达尔文“适者生存”原则。

Step 4: 遗传操作 。在选出的 个个体中,以事件给定的杂交概率 任意选择出两个个体进行 交叉运算 ,产生两个新的个体,重复此过程直到所有要求杂交的个体杂交完毕。根据预先设定的变异概率 在 个个体中选择出若干个体,按一定的策略对选出的个体进行 变异运算

Step 5: 检验算法等停止条件 。若满足,则停止算法的执行,将最优个体的染色体进行解码得到所需要的最优解,否则转到 Step 2 继续进行迭代过程。

‘伍’ 《Java遗传算法编程pdf下载在线阅读全文,求百度网盘云资源

《Java遗传算法编程》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1l6_14X1Yhcgv8kYwHqyY2g

?pwd=xv3v 提取码: xv3v
简介:本书简单、直接地介绍了遗传算法,并且针对所讨论的示例问题,给出了Java代码的算法实现。全书分为6章。第1章简单介绍了人工智能和生物进化的知识背景,这也是遗传算法的历史知识背景。第2章给出了一个基本遗传算法的实现;第4章和第5章,分别针对机器人控制器、旅行商问题、排课问题展开分析和讨论,并给出了算法实现。在这些章的末尾,还给出了一些练习供读者深入学习和实践。第6章专门讨论了各种算法的优化问题。

‘陆’ java写的遗传算法

package baseclass;
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;

/**
* 编写者: 赖志环
* 标准遗传算法求解函数
* 编写日期: 2007-12-2
*/
class Best {
public int generations; //最佳适应值代号
public String str; //最佳染色体
public double fitness; //最佳适应值
}

public class SGAFrame extends JFrame {

private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色体
private String[] ipop = new String[10]; //染色体
private int gernation = 0; //染色体代号
public static final int GENE = 22; //基因数
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}

/**
* Create the frame
*/
public SGAFrame() {
super();

this.ipop = inialPops();

getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

final JLabel label = new JLabel();
label.setText("X的区间:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);

final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);

final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);

final JLabel label_2 = new JLabel();
label_2.setText("利用标准遗传算法求解函数f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);

final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);

final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);

textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}

/**
* 初始化一条染色体(用二进制字符串表示)
* @return 一条染色体
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}

/**
* 初始化一组染色体
* @return 染色体组
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}

/**
* 将染色体转换成x的值
* @param str 染色体
* @return 染色体的适应值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);

return fitness;
}

/**
* 计算群体上每个个体的适应度值;
* 按由个体适应度值所决定的某个规则选择将进入下一代的个体;
*/
private void select() {
double evals[] = new double[10]; // 所有染色体适应值
double p[] = new double[10]; // 各染色体选择概率
double q[] = new double[10]; // 累计概率
double F = 0; // 累计适应值总和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的记录下来
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色体适应值总和

}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {

double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];

} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}

/**
* 交叉操作
* 交叉率为25%,平均为25%的染色体进行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}

/**
* 基因突变操作
* 1%基因变异m*pop_size 共180个基因,为了使每个基因都有相同机会发生变异,
* 需要产生[1--180]上均匀分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色体号

int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因号
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("变异前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "1" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring

(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -

1) + "0" + ipop

[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("变异后" + ipop[chromosomeNum]);
}
}
/**
* 执行遗传算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "个染色体"+best.str;
return str;
}

}

‘柒’ 遗传算法

例如:[1,2,3],[1,3,2],[3,2,1]均是函数 3x+4y+5z<100 的可行解(代进去成立即为可行解),那么这些可行解在遗传算法中均称为“染色体”。可行解由 3 个元素构成,每个元素都称为染色体的一个基因。

遗传算法在运行过程中会进行 N 次迭代,每次迭代都会生成若干条染色体。适应度函数会给本次迭代中生成的所有染色体打个分,来评判这些染色体的适应度,然后将适应度低的染色体淘汰,只保留适应度高的染色体,从而讲过若干次迭代后染色体的质量将越来越好。

遗传算法每次迭代会生成 N 条染色体,在遗传算法中一次迭代被称为一次进化。每次进化新的染色体生成的方法——交叉。

每一次进化完成后,都要计算每一条染色体的适应度+适应度概率。在交叉过程中就需要根据这个概率来选择父母染色体。适应度高的染色体被选中的概率越高。(这就是遗传算法能够保留优良基因的原因)

交叉能保证每次进化留下优良的基因,但它仅仅是对原有的结果集进行选择,基因还是那么几个,只不过交换了它们的顺序。这只能保证 N 次进化后,计算结果更接近于局部最优解,而永远没办法达到全局最优解(?????),为了解决这个问题,需引入变异。

假设每次进化都需要生成 N 条染色体,那么每次进化中,通过交叉方式需要生成 N-M 条,剩余的 M 条染色体通过复制上一代适应度最高的 M 条染色体而来。

本文的目标是使所有任务的总处理时间最少,时间越短适应度越大。适应度 = 1 / 所有任务的总处理时间

将任务从 0 开始编号,用一个一维数组存储每个任务的时长

tasks[i] :表第 i 个任务的长度。
第 0 个任务的长度为 2;
第 1 个任务的长度为 4;
第 2 个任务的长度为 6;
第 3 个任务的长度为 8;

将处理器节点从 0 开始编号,用一个一维数组存储每个处理器的处理速度(单位时间内可处理的长度)

nodes[i] 表第 i 个节点的处理速度。
第 0 个节点的处理速度为 2;
第 1 个节点的处理速度为 1。

timeMatrix[i][j] 表第 i 个任务在第 j 个节点上处理的话,所需处理时间。

一个可行解就是一个染色体,就是一个一维数组

chromosome[i]=j 表将第 i 个任务分配到节点 j 上处理(任务编号从 0 开始;节点编号从 0 开始)

将任务 0 分配给 3 号节点处理;
将任务 1 分配给 2 号节点处理;
将任务 2 分配给 1 号节点处理;
将任务 3 分配给 0 号节点处理。

记录本次进化生成的 N 条染色体的适应度,将染色体从 0 开始编号。

adaptablility[i] 表第 i 个染色体的适应度

selectionProbability[i] 表第 i 个染色体的适应度概率,所有染色体的适应度概率和为 1 。

java中PriorityQueue优先级队列使用方法

第 2 次迭代结果

第 100 次迭代结果

阅读全文

与遗传算法java实现相关的资料

热点内容
如何验证web服务器是否正常工作 浏览:132
全球最大的加密货币网站 浏览:284
解压文件为什么有问号 浏览:389
php考试系统模板 浏览:431
pdf导出图片模糊 浏览:610
我的世界编玩边学服务器地址 浏览:456
基于单片机的火灾报警系统 浏览:166
上海追星用什么app 浏览:425
海马m5压缩机维修 浏览:98
抖音怎么给自己喜欢的加密 浏览:247
中国五大加密货币 浏览:263
程序员手疼7年查6处骨肿瘤 浏览:39
python列表对象的创建与删除 浏览:467
python删除excel表格中的一行 浏览:521
android数据库的增删改查 浏览:632
云服务器2g4g有什么区别 浏览:324
显示文件夹所有文件的文件名函数 浏览:213
可以在网站写代码的编译器 浏览:76
王者换服务器怎么不用重玩 浏览:328
武汉编译ipfs云存储器 浏览:52