‘壹’ 如何优雅的用python玩转语音聊天机器人
所需硬件:
树莓派B+
人体红外线感应模块
内置麦克风摄像头(实测树莓派免驱淘宝链接)
申请API:
网络语音api
图灵api
语音聊天机器人实现原理:当有人来到跟前时--》触发聊天功能,开始以每2s检测录制语音--》通过网络语音api合成文字--》传递给图灵api返回回答信息--》通过网络语音合成播放
【人体感应识别部分Python代码renti.py】
#/usr/bin/python#coding:utf-8import RPi.GPIO as GPIOimport timeimport osimport signalimport atexitGPIO.setmode(GPIO.BCM) GPIO_PIR = 14 GPIO.setup(GPIO_PIR,GPIO.IN) # Echojing = 0dong = 0 sum = 0sum1 = 0oldren = 0sleep = 0def ganying(): i = 0 ok = 0 error = 0 while i < 10: if GPIO.input(GPIO_PIR) == 1 : ok = ok + 1 if GPIO.input(GPIO_PIR) == 0 : error = error + 1 time.sleep(0.01) i = i + 1 ren = ok/(error+1) return ren
1
GPIO_PIR = 14
为 红外线检测模块与树莓派的针脚,脚本函数返回0表示无人,>0 为有人
【Python语音识别聊天部分robot.py】
#/usr/bin/python# -*- coding:utf-8 -*-import sysreload(sys)sys.setdefaultencoding( "utf-8" )import urllibimport urllib2import jsonimport uuidimport base64import osimport timefrom renti import * #获取网络tokenappid=7647466apikey="网络API"secretkey="网络API" _url="h.com/oauth/2.0/token?grant_type=client_credentials&client_id=" + apikey + "&client_secret=" + secretkey; y_post=urllib2.urlopen(_url)y_read=y_post.read()y_token=json.loads(y_read)['access_token']#print y_read#print y_token #------------------function------------- def luyin(): os.system('arecord -D plughw:1,0 -c 1 -d 2 1.wav -r 8000 -f S16_LE 2>/dev/null') def fanyi():
#---------------语音识别部分 mac_address="haogeoyes" with open("1.wav",'rb') as f: s_file = f.read() speech_base64=base64.b64encode(s_file).decode('utf-8') speech_length=len(s_file) data_dict = {'format':'wav', 'rate':8000, 'channel':1, 'cuid':mac_address, 'token':y_token, 'lan':'zh', 'speech':speech_base64, 'len':speech_length} json_data = json.mps(data_dict).encode('utf-8') json_length = len(json_data) asr_server = 'm/server_api' request = urllib2.Request(url=asr_server) request.add_header("Content-Type", "application/json") request.add_header("Content-Length", json_length) fs = urllib2.urlopen(url=request, data=json_data) result_str = fs.read().decode('utf-8') json_resp = json.loads(result_str) if json_resp.has_key('result'): out_txt=json_resp['result'][0] else: out_txt="Null" return out_txt def tuling(b): f=urllib.urlopen("23.com/openapi/api?key="此处为图灵API"&info=%s" % b) f=json.loads(f.read())['text'] return f def hecheng(text,y_token): #text="你好我是机器人牛牛很高兴能够认识你" geturl="u.com/text2audio?tex="+text+"&lan=zh&per=1&pit=9&spd=6&cuid=CCyo6UGf16ggKZGwGpQYL9Gx&ctp=1&tok="+y_token return os.system('omxplayer "%s" > /dev/null 2>&1 '%(geturl)) #return os.system('omxplayer "%s" > /dev/null 2>&1 '%(geturl)) def nowtime(): return time.strftime('%Y-%m-%d %H:%M:%S ') #---------------main-----------------num=0 #num用来判断是第一次说话,还是在对话过程中first=1 #判断是不是第一说话 当1000次没有人动认为是第一次while True: if ganying()!=0: run=open('run.log','a') if first==0: hecheng("你好,我是牛牛机器人,你可以和我聊天,不过说话的时候你必须靠近话筒近一点,",y_token) hecheng("说点什么吧,2秒钟内说完哦.",y_token) first=1 #为1一段时间就不执行 num=0 #从新计数 #print ganying() run.write(nowtime()+"说点神马吧..........."+'\n') print nowtime()+"说点神马吧.........." luyin() #开始录音 out=fanyi().encode("utf-8") #翻译文字 run.write(nowtime()+"我说:"+out+'\n') print nowtime()+"我说:"+out if out == "Null": text="没有听清楚你说什么" os.system('omxplayer "shenme.wav" > /dev/null 2>&1 ') else: text=tuling(out) hecheng(text,y_token) print nowtime()+"牛牛:"+text run.write(nowtime()+"牛牛:"+text+'\n') run.close() else: #print ganying() #调试查看是否为0有人没人 #print num num=num+1 #num长时间增大说明没有人在旁边 if num > 1000: first=0 #0表示第一次说话
万事俱备 运行nohup python robot.py 哈哈就可以脱离屏幕开始愉快的语音聊天啦
下面看看聊天的日志记录吧
后续更新。。。。。。Python如何用语音优雅的控制小车
‘贰’ python能写微软小冰么
聊天机器人已经有了很多很好的实现,比如图灵机器人、微软小冰都非常的智能而且语气都与人类相似。但这并不是一件一劳永逸的事情,在特定的场景下问题的回答是有边界的或者符合特定业务场景的,所以还是需要可以按需定制开发的机器人。
chatterBot项目是一个用Python实现聊天机器人的开源项目(作者:Gunther Cox,github地址),下面介绍下chatterBot的实现方式以及如何在这个项目的基础上做定制开发:
chatterBot将一个机器人分为input Adapter、logic Adapter、storage Adapter、output Adapter以及Trainer模块。
input Adapter: 这个模块被设计用来获取并处理用户输入,获取输入是指自动从外部获取输入,比如从gitter room, twitter等这些都是项目自带的输入插件。处理用户输入是把获取到的输入转化为可以进行下一步处理的Statement对象。Statement对象是对用户输入的抽象,包含了输入的text,附加信息并提供了序列化,对比等方法。input Adapter被设计成为插件式的,所以在实践当中,我们可以实现自己的input Adapter,比如为每个用户打上id,这样输入就包含了用户信息,在接下来的处理中就可以根据不同用户实现不同逻辑了。
logic Adapter: 完成输入处理后就到了逻辑处理,这依然是一个插件式的设计,主进程在启动时会将用户定义的所有逻辑处理插件添加到logic context中,然后交MultiLogicAdapter进行处理,MultiLogicAdapter会依次调用每个logic Adapter,logic Adapter被调用时先执行can_process方式判断输入是否可以命中这个逻辑处理插件。比如说 "今天天气怎么样"显然需要命中天气逻辑处理插件,但时间逻辑处理插件的can_process方法则应该返回False。在命中后logic Adapter要负责计算出对应的回答(也是包装成Statement对象)以及可信度(confidence),MultiLogicAdapter会取可信度最高的回答,并进入下一步。项目已经自带了很多logic Adapter,有close match、close meaning、时间逻辑、数学逻辑,甚至还有情感逻辑,大家可以自己探索。在实践当中,我们还是需要自己定制开发一些逻辑处理插件,如果我们希望自己的逻辑处理插件优先级始终高于自带的插件,可以提高confidence,自带的逻辑处理插件返回的confidence最大是1,只要confidence比1大就是最高优先级了。
storage Adapter: 刚才介绍logic Adapter时其实还有一点没有说明,就是大部分的逻辑处理还是基于训练集的,在处理时需要与训练集做匹配,所以这个项目将训练集的持久化也做成了插件式的,自带的持久化有文件型(json格式)、mongodb,我们也可以做自己的持久化层,比如支持redis,支持mysql。
output Adapter: 这个模块就不用详细介绍了,基本与input Adapter一致,只是这里处理的是输出。也是插件式设计,所以我们也可以定制开发,比如与腾讯等语音合成服务提供商的接口集成,我们的机器人就可以"开口说话了"。
Trainer: 这个模块提供训练机器人的方法,自带的方法有两种,一种是通过输入list来训练,比如["你好","你好啊"],后者是前者的回答,另一种是通过导入Corpus格式的文件来训练。如果这两种方法都没有办法满足的话,我们还可以写自己的训练模块,但总的来说还是要将最终的训练集转换成上述两种类型。
总结: chatterBot这个项目并不是一个非常完善的聊天机器人项目(如果你希望一安装就获得一个话唠一样的机器人那就可以放弃了),总的来说自带的功能有限,但是这个项目并不简单,因为项目本身结构非常清晰,又高度插件化,所以非常适合在此基础上做定制化开发,so 动手吧。
‘叁’ Python如何使用图灵的API Key搭建聊天机器人
python是当下十分火爆的编程语言,尤其在人工智能应用方面。如果有心蠢咐从事编程方向的工作,最好到专业机构深入学习、多实践,橡档闹更贴近市场,梁罩这样更有利于将来的发展。
‘肆’ 请教大神,python适合机器人吗
很适合啊~就是因为人工智能的大火才带火了Python,所以Python当然适合机器人了。
利用Python实现QQ,微信聊天机器人,都是可以实现的,很简单。
再看看别人怎么说的。