㈠ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型
-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。
随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变
Figure 1
K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。
实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。
技术路线:
sklearn.cluster.Kmeans
数据实例:
㈡ 谱聚类(Spectral clustering)(python实现)
谱聚类概念 :
谱聚类是一种基于图论的聚类方法,通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据聚类的母的。谱聚类可以理解为将高维空间的数据映射到低维,然后在低维空间用其它聚类算法(如KMeans)进行聚类。
算法步骤
1 计算相似度矩阵 W
2 计算度矩阵 D
3 计算拉普拉斯矩阵L=D-W
4 计算L的特征值,将特征值从小到大排序,取前k个特征值.将这个特征值向量转换为矩阵
5 通过其他聚类算法对其进行聚类,如k-means
详细公式和概念请到 大佬博客
相比较PCA降维中取前k大的特征值对应的特征向量,这里取得是前k小的特征值对应的特征向量。但是上述的谱聚类算法并不是最优的,接下来我们一步一步的分解上面的步骤,总结一下在此基础上进行优化的谱聚类的版本。
python实现
例子一:使用谱聚类从噪声背景中分割目标
效果图
例子2:分割图像中硬币的区域
效果图
注意
1)当聚类的类别个数较小的时候,谱聚类的效果会很好,但是当聚类的类别个数较大的时候,则不建议使用谱聚类;
(2)谱聚类算法使用了降维的技术,所以更加适用于高维数据的聚类;
(3)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法(比如K-Means)很难做到
(4)谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解
(5)谱聚类对相似度图的改变和聚类参数的选择非常的敏感;
(6)谱聚类适用于均衡分类问题,即各簇之间点的个数相差不大,对于簇之间点个数相差悬殊的聚类问题,谱聚类则不适用;
参考
谱聚类算法介绍
sklearn官网
㈢ 建议收藏!10 种 Python 聚类算法完整操作示例
聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:
聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。
群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。
聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:
聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。
有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。
一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:
每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。
在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。
1.库安装
首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:
接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。
运行该示例时,您应该看到以下版本号或更高版本。
2.聚类数据集
我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。
运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。
已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。
它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。
数据集的散点图,具有使用亲和力传播识别的聚类
4.聚合聚类
聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。
使用聚集聚类识别出具有聚类的数据集的散点图
5.BIRCHBIRCH
聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。
它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。
使用BIRCH聚类确定具有聚类的数据集的散点图
6.DBSCANDBSCAN
聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。
它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。
使用DBSCAN集群识别出具有集群的数据集的散点图
7.K均值
K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。
它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。
使用K均值聚类识别出具有聚类的数据集的散点图
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。
它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。
带有最小批次K均值聚类的聚类数据集的散点图
9.均值漂移聚类
均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。
它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。
具有均值漂移聚类的聚类数据集散点图
10.OPTICSOPTICS
聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。
它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。
使用OPTICS聚类确定具有聚类的数据集的散点图
11.光谱聚类
光谱聚类是一类通用的聚类方法,取自线性线性代数。
它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。
使用光谱聚类聚类识别出具有聚类的数据集的散点图
12.高斯混合模型
高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。
使用高斯混合聚类识别出具有聚类的数据集的散点图
在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:
㈣ 如何用python对文本进行聚类
实现原理:
首先从Tourist_spots_5A_BD.txt中读取景点信息,然后通过调用无界面浏览器PhantomJS(Firefox可替代)访问网络链接"http://ke..com/",通过Selenium获取输入对话框ID,输入关键词如"故宫",再访问该网络页面。最后通过分析DOM树结构获取摘要的ID并获取其值。核心代码如下:
driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
PS:Selenium更多应用于自动化测试,推荐Python爬虫使用scrapy等开源工具。
# coding=utf-8
"""
Created on 2015-09-04 @author: Eastmount
"""
import time
import re
import os
import sys
import codecs
import shutil
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import selenium.webdriver.support.ui as ui
from selenium.webdriver.common.action_chains import ActionChains
#Open PhantomJS
driver = webdriver.PhantomJS(executable_path="G:\phantomjs-1.9.1-windows\phantomjs.exe")
#driver = webdriver.Firefox()
wait = ui.WebDriverWait(driver,10)
#Get the Content of 5A tourist spots
def getInfobox(entityName, fileName):
try:
#create paths and txt files
print u'文件名称: ', fileName
info = codecs.open(fileName, 'w', 'utf-8')
#locate input notice: 1.visit url by unicode 2.write files
#Error: Message: Element not found in the cache -
# Perhaps the page has changed since it was looked up
#解决方法: 使用Selenium和Phantomjs
print u'实体名称: ', entityName.rstrip('\n')
driver.get("http://ke..com/")
elem_inp = driver.find_element_by_xpath("//form[@id='searchForm']/input")
elem_inp.send_keys(entityName)
elem_inp.send_keys(Keys.RETURN)
info.write(entityName.rstrip('\n')+'\r\n') #codecs不支持'\n'换行
time.sleep(2)
#load content 摘要
elem_value = driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
for value in elem_value:
print value.text
info.writelines(value.text + '\r\n')
time.sleep(2)
except Exception,e: #'utf8' codec can't decode byte
print "Error: ",e
finally:
print '\n'
info.close()
#Main function
def main():
#By function get information
path = "BaiSpider\\"
if os.path.isdir(path):
shutil.rmtree(path, True)
os.makedirs(path)
source = open("Tourist_spots_5A_BD.txt", 'r')
num = 1
for entityName in source:
entityName = unicode(entityName, "utf-8")
if u'故宫' in entityName: #else add a '?'
entityName = u'北京故宫'
name = "%04d" % num
fileName = path + str(name) + ".txt"
getInfobox(entityName, fileName)
num = num + 1
print 'End Read Files!'
source.close()
driver.close()
if __name__ == '__main__':
main()
㈤ python对数据进行聚类怎么显示数据分类
将其整理成数据集为:
[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]
算法过程:
1、计算原始的信息熵。
2、依次计算数据集中每个样本的每个特征的信息熵。
3、比较不同特征信息熵的大小,选出信息熵最大的特征值并输出。
运行结果:
col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0
col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108
bestInfoGain : 2.37744375108 bestFeature: 0
结果分析:
说明按照第一列,即有无喉结这个特征来进行分类的效果更好。
思考:
1、能否利用决策树算法,将样本最终的分类结果进行输出?如样本1,2,3属于男性,4属于女性。
2、示例程序生成的决策树只有一层,当特征量增多的时候,如何生成具有多层结构的决策树?
3、如何评判分类结果的好坏?
在下一篇文章中,我将主要对以上三个问题进行分析和解答。如果您也感兴趣,欢迎您订阅我的文章,也可以在下方进行评论,如果有疑问或认为不对的地方,您也可以留言,我将积极与您进行解答。
完整代码如下:
from math import log
"""
计算信息熵
"""
def calcEntropy(dataset):
diclabel = {} ## 标签字典,用于记录每个分类标签出现的次数
for record in dataset:
label = record[-1]
if label not in diclabel.keys():
diclabel[label] = 0
diclabel[label] += 1
### 计算熵
entropy = 0.0
cnt = len(dataset)
for label in diclabel.keys():
prob = float(1.0 * diclabel[label]/cnt)
entropy -= prob * log(prob,2)
return entropy
def initDataSet():
dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]
label = ["male","female"]
return dataset,label
#### 拆分dataset ,根据指定的过滤选项值,去掉指定的列形成一个新的数据集
def splitDataset(dataset , col, value):
retset = [] ## 拆分后的数据集
for record in dataset:
if record[col] == value :
recedFeatVec = record[:col]
recedFeatVec.extend(record[col+1:]) ### 将指定的列剔除
retset.append(recedFeatVec) ### 将新形成的特征值列表追加到返回的列表中
return retset
### 找出信息熵增益最大的特征值
### 参数:
### dataset : 原始的数据集
def findBestFeature(dataset):
numFeatures = len(dataset[0]) - 1 ### 特征值的个数
baseEntropy = calcEntropy(dataset) ### 计算原始数据集的熵
baseInfoGain = 0.0 ### 初始信息增益
bestFeature = -1 ### 初始的最优分类特征值索引
### 计算每个特征值的熵
for col in range(numFeatures):
features = [record[col] for record in dataset] ### 提取每一列的特征向量 如此处col= 0 ,则features = [1,1,0,0]
uniqueFeat = set(features)
curInfoGain = 0 ### 根据每一列进行拆分,所获得的信息增益
for featVal in uniqueFeat:
subDataset = splitDataset(dataset,col,featVal) ### 根据col列的featVal特征值来对数据集进行划分
prob = 1.0 * len(subDataset)/numFeatures ### 计算子特征数据集所占比例
curInfoGain += prob * calcEntropy(subDataset) ### 计算col列的特征值featVal所产生的信息增益
# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
if curInfoGain > baseInfoGain:
baseInfoGain = curInfoGain
bestFeature = col
return baseInfoGain,bestFeature ### 输出最大的信息增益,以获得该增益的列
dataset,label = initDataSet()
infogain , bestFeature = findBestFeature(dataset)
print "bestInfoGain :" , infogain, " bestFeature:",bestFeature
㈥ python怎么用sklearn包进行聚类
#-*-coding:utf-8-*-
fromsklearn.clusterimportKMeans
fromsklearn.externalsimportjoblib
importnumpy
final=open('c:/test/final.dat','r')
data=[line.strip().split(' ')forlineinfinal]
feature=[[float(x)forxinrow[3:]]forrowindata]
#调用kmeans类
clf=KMeans(n_clusters=9)
s=clf.fit(feature)
prints
#9个中心
printclf.cluster_centers_
#每个样本所属的簇
printclf.labels_
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
printclf.inertia_
#进行预测
printclf.predict(feature)
#保存模型
joblib.mp(clf,'c:/km.pkl')
#载入保存的模型
clf=joblib.load('c:/km.pkl')
'''
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
foriinrange(5,30,1):
clf=KMeans(n_clusters=i)
s=clf.fit(feature)
printi,clf.inertia_
'''
㈦ 减法聚类如何用Python实现
下面是一个k-means聚类算法在python2.7.5上面的具体实现,你需要先安装Numpy和Matplotlib:
from numpy import *
import time
import matplotlib.pyplot as plt
# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k > len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
㈧ Python怎么构建文本矩阵并聚类
可能我很快回答不了你的问题。还需要细细回味一下。
但是我觉得你的问题是一个比较明显的短文本聚类问题,这个问题应该在国际上都是比较难的吧。
如果还涉及到中文,中文的相关处理又不能照抄英文短文本聚类的方法,相关资料更加少了。
我倒是建议你 多看一些短文本聚类相关的文章。
问题一:技术上python矩阵表示的话:你可以使用python包,如下:
from numpy import matrix
A = matrix( [[1,2,3],[11,12,13],[21,22,23]])
这样你需要额外规定化:行i表示文档编号i的文档,列j表示词j出现次数,A[i][j]表示在文档i中词j的出现频率
或者
如同那篇文章所说的采用dict表示法:A = [{'额外':1},{'每天':1,'回帖':1},......]表示整个文档集合。
问题二:如同这样的问题本质一样,短文本聚类是否还适合传统的分词,去除副词...等处理步骤,
如何选择合适的模型来表示这类问题,我觉得你还是参考一些这方面的文章,最好中文的。
比如现在很火的微博,也会有好多的人尝试对其中成干上万评论进行聚类。很多进行二类或者三类聚类/分类:支持-中立-反对。
论坛的评论应该很早以前就有研究聚类/分类.我觉得去那里参考会更好.如果不是特别面向指定目的的聚类,我觉得采用一些使用宽泛的方法就行了。感觉结果不会很好。
问题三:EM算法感觉像纯数学的东西,学术功底不够深,我也不好发表看法。
感觉这个问题的本质已经超出我的知识范畴。最简单文档聚类无非:分词-文本预处理[同义词之类]-文档与词计频矩阵表示-(TF-IDF预处理)-kmeans跑起来-输出结果.