1. PIL python 是什么
python图形处理库PIL(Python Image Library)
PIL使你可以通过Python解释器进行图像处理. 支持多种文件格式,提供了强大的图像处理能力。
http://www.pythonware.com/procts/pil/
2. 如何用python把图片转换成黑白像素的
如果你下载的是Python3的,那么print("hello world")才正确。
图像处理中的边缘检测这块一般采用膨胀算法啥的,第一步应该是从彩色或者灰度转二色,我觉得用PIL这些库来处理挺好。而图像处理本身python应该有包可以干这个活的吧。
3. python:PIL图像处理
PIL (Python Imaging Library)
Python图像处理库,该库支持多种文件格式,提供强大的图像处理功能。
PIL中最重要的类是Image类,该类在Image模块中定义。
从文件加载图像:
如果成功,这个函数返回一个Image对象。现在你可以使用该对象的属性来探索文件的内容。
format 属性指定了图像文件的格式,如果图像不是从文件中加载的则为 None 。
size 属性是一个2个元素的元组,包含图像宽度和高度(像素)。
mode 属性定义了像素格式,常用的像素格式为:“L” (luminance) - 灰度图, “RGB” , “CMYK”。
如果文件打开失败, 将抛出IOError异常。
一旦你拥有一个Image类的实例,你就可以用该类定义的方法操作图像。比如:显示
( show() 的标准实现不是很有效率,因为它将图像保存到一个临时文件,然后调用外部工具(比如系统的默认图片查看软件)显示图像。该函数将是一个非常方便的调试和测试工具。)
接下来的部分展示了该库提供的不同功能。
PIL支持多种图像格式。从磁盘中读取文件,只需使用 Image 模块中的 open 函数。不需要提供文件的图像格式。PIL库将根据文件内容自动检测。
如果要保存到文件,使用 Image 模块中的 save 函数。当保存文件时,文件名很重要,除非指定格式,否则PIL库将根据文件的扩展名来决定使用哪种格式保存。
** 转换文件到JPEG **
save 函数的第二个参数可以指定使用的文件格式。如果文件名中使用了一个非标准的扩展名,则必须通过第二个参数来指定文件格式。
** 创建JPEG缩略图 **
需要注意的是,PIL只有在需要的时候才加载像素数据。当你打开一个文件时,PIL只是读取文件头获得文件格式、图像模式、图像大小等属性,而像素数据只有在需要的时候才会加载。
这意味着打开一个图像文件是一个非常快的操作,不会受文件大小和压缩算法类型的影响。
** 获得图像信息 **
Image 类提供了某些方法,可以操作图像的子区域。提取图像的某个子区域,使用 crop() 函数。
** 复制图像的子区域 **
定义区域使用一个包含4个元素的元组,(left, upper, right, lower)。坐标原点位于左上角。上面的例子提取的子区域包含300x300个像素。
该区域可以做接下来的处理然后再粘贴回去。
** 处理子区域然后粘贴回去 **
当往回粘贴时,区域的大小必须和参数匹配。另外区域不能超出图像的边界。然而原图像和区域的颜色模式无需匹配。区域会自动转换。
** 滚动图像 **
paste() 函数有个可选参数,接受一个掩码图像。掩码中255表示指定位置为不透明,0表示粘贴的图像完全透明,中间的值表示不同级别的透明度。
PIL允许分别操作多通道图像的每个通道,比如RGB图像。 split() 函数创建一个图像集合,每个图像包含一个通道。 merge() 函数接受一个颜色模式和一个图像元组,然后将它们合并为一个新的图像。接下来的例子交换了一个RGB图像的三个通道。
** 分离和合并图像通道 **
对于单通道图像, split() 函数返回图像本身。如果想处理各个颜色通道,你可能需要先将图像转为RGB模式。
resize() 函数接受一个元组,指定图像的新大小。
rotate() 函数接受一个角度值,逆时针旋转。
** 基本几何变换 **
图像旋转90度也可以使用 transpose() 函数。 transpose() 函数也可以水平或垂直翻转图像。
** transpose **
transpose() 和 rotate() 函数在性能和结果上没有区别。
更通用的图像变换函数为 transform() 。
PIL可以转换图像的像素模式。
** 转换颜色模式 **
PIL库支持从其他模式转为“L”或“RGB”模式,其他模式之间转换,则需要使用一个中间图像,通常是“RGB”图像。
ImageFilter 模块包含多个预定义的图像增强过滤器用于 filter() 函数。
** 应用过滤器 **
point() 函数用于操作图像的像素值。该函数通常需要传入一个函数对象,用于操作图像的每个像素:
** 应用点操作 **
使用以上技术可以快速地对图像像素应用任何简单的表达式。可以结合 point() 函数和 paste 函数修改图像。
** 处理图像的各个通道 **
注意用于创建掩码图像的语法:
Python计算逻辑表达式采用短路方式,即:如果and运算符左侧为false,就不再计算and右侧的表达式,而且返回结果是表达式的结果。比如 a and b 如果a为false则返回a,如果a为true则返回b,详见Python语法。
对于更多高级的图像增强功能,可以使用 ImageEnhance 模块中的类。
可以调整图像对比度、亮度、色彩平衡、锐度等。
** 增强图像 **
PIL库包含对图像序列(动画格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些实验性的格式。 TIFF 文件也可以包含多个帧。
当打开一个序列文件时,PIL库自动加载第一帧。你可以使用 seek() 函数 tell() 函数在不同帧之间移动。
** 读取序列 **
如例子中展示的,当序列到达结尾时,将抛出EOFError异常。
注意当前版本的库中多数底层驱动只允许seek到下一帧。如果想回到前面的帧,只能重新打开图像。
以下迭代器类允许在for语句中循环遍历序列:
** 一个序列迭代器类 **
PIL库包含一些函数用于将图像、文本打印到Postscript打印机。以下是一个简单的例子。
** 打印到Postscript **
如前所述,可以使用 open() 函数打开图像文件,通常传入一个文件名作为参数:
如果打开成功,返回一个Image对象,否则抛出IOError异常。
也可以使用一个file-like object代替文件名(暂可以理解为文件句柄)。该对象必须实现read,seek,tell函数,必须以二进制模式打开。
** 从文件句柄打开图像 **
如果从字符串数据中读取图像,使用StringIO类:
** 从字符串中读取 **
如果图像文件内嵌在一个大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模块来访问。
** 从tar文档中读取 **
** 该小节不太理解,请参考原文 **
有些解码器允许当读取文件时操作图像。通常用于在创建缩略图时加速解码(当速度比质量重要时)和输出一个灰度图到激光打印机时。
draft() 函数。
** Reading in draft mode **
输出类似以下内容:
注意结果图像可能不会和请求的模式和大小匹配。如果要确保图像不大于指定的大小,请使用 thumbnail 函数。
Python2.7 教程 PIL
http://www.liaoxuefeng.com/wiki//
Python 之 使用 PIL 库做图像处理
http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html
来自 http://effbot.org/imagingbook/introction.htm
4. Python怎么输出一幅图像每个点的像素值
我是用PIL这个库,用opencv的库也可以x0dx0afrom PIL import Imagex0dx0aimg=Image.open("demo.jpg")x0dx0aimg_array=img.load()x0dx0a然后就可以通过img_array[x,y]来读取像素值了x0dx0a另外img.size查看图片大小,也可以通过img_array[x,y]=(11,22,33)来设置RGB像素值
5. 怎么样在Python编程中使用Pillow来处理图像
安装
刚接触Pillow的朋友先来看一下Pillow的安装方法,在这里我们以Mac OS环境为例: (1)、使用 pip 安装 Python 库。pip 是 Python 的包管理工具,安装后就可以直接在命令行一站式地安装/管理各种库了(pip 文档)。
$ wget http://pypi.python.org/packages/source/p/pip/pip-0.7.2.tar.gz$ tar xzf pip-0.7.2.tar.gz$ cd pip-0.7.2$ python setup.py install
(2)、使用 pip 下载获取 Pillow:
$ pip install pillow
(3)、安装过程中命令行出现错误提示:”error: command ‘clang' failed with exit status
1”。上网查阅,发现需要通过 Xcode 更新 Command Line Tool。于是打开
Xcode->Preferences->Downloads-Components选项卡。咦?竟然没了 Command Line
Tools。再查,发现 Xcode 5 以上现在需要用命令行安装:
$ xcode-select —install
系统会弹出安装命令行工具的提示,点击安装即可。
此时再 pip install pillow,就安装成功了。
pip freeze 命令查看已经安装的 Python 包,Pillow 已经乖乖躺那儿了。
好了,下面开始进入教程~
Image类
Pillow中最重要的类就是Image,该类存在于同名的模块中。可以通过以下几种方式实例化:从文件中读取图片,处理其他图片得到,或者直接创建一个图片。
使用Image模块中的open函数打开一张图片:
>>> from PIL import Image>>> im = Image.open("lena.ppm")
如果打开成功,返回一个Image对象,可以通过对象属性检查文件内容
>>> from __future__ import print_function>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB
format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;size属性是一个tuple,表示图像的宽和高(单位为像素);mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。
如果文件不能打开,则抛出IOError异常。
当有一个Image对象时,可以用Image类的各个方法进行处理和操作图像,例如显示图片:
>>> im.show()
ps:标准版本的show()方法不是很有效率,因为它先将图像保存为一个临时文件,然后使用xv进行显示。如果没有安装xv,该函数甚至不能工作。但是该方法非常便于debug和test。(windows中应该调用默认图片查看器打开)
读写图片
Pillow库支持相当多的图片格式。直接使用Image模块中的open()函数读取图片,而不必先处理图片的格式,Pillow库自动根据文件决定格式。
Image模块中的save()函数可以保存图片,除非你指定文件格式,那么文件名中的扩展名用来指定文件格式。
图片转成jpg格式
from __future__ import print_functionimport os, sysfrom PIL import Imagefor infile in sys.argv[1:]: f, e = os.path.splitext(infile) outfile = f + ".jpg" if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print("cannot convert", infile)
save函数的第二个参数可以用来指定图片格式,如果文件名中没有给出一个标准的图像格式,那么第二个参数是必须的。
创建缩略图
from __future__ import print_functionimport os, sysfrom PIL import Imagesize = (128, 128)for infile in sys.argv[1:]: outfile = os.path.splitext(infile)[0] + ".thumbnail" if infile != outfile: try: im = Image.open(infile) im.thumbnail(size) im.save(outfile, "JPEG") except IOError: print("cannot create thumbnail for", infile)
必须指出的是除非必须,Pillow不会解码或raster数据。当你打开一个文件,Pillow通过文件头确定文件格式,大小,mode等数据,余下数据直到需要时才处理。
这意味着打开文件非常快,与文件大小和压缩格式无关。下面的程序用来快速确定图片属性:
确定图片属性
from __future__ import print_functionimport sysfrom PIL import Imagefor infile in sys.argv[1:]: try: with Image.open(infile) as im: print(infile, im.format, "%dx%d" % im.size, im.mode) except IOError: pass
裁剪、粘贴、与合并图片
Image类包含还多操作图片区域的方法。如crop()方法可以从图片中提取一个子矩形
从图片中复制子图像
box = im.() #直接复制图像box = (100, 100, 400, 400)region = im.crop(box)
区域由4-tuple决定,该tuple中信息为(left, upper, right, lower)。 Pillow左边系统的原点(0,0)为图片的左上角。坐标中的数字单位为像素点,所以上例中截取的图片大小为300*300像素^2。
处理子图,粘贴回原图
region = region.transpose(Image.ROTATE_180)im.paste(region, box)
将子图paste回原图时,子图的region必须和给定box的region吻合。该region不能超过原图。而原图和region的mode不需要匹配,Pillow会自动处理。
另一个例子
Rolling an imagedef roll(image, delta): "Roll an image sideways" image = image.() #复制图像 xsize, ysize = image.size delta = delta % xsize if delta == 0: return image part1 = image.crop((0, 0, delta, ysize)) part2 = image.crop((delta, 0, xsize, ysize)) image.paste(part2, (0, 0, xsize-delta, ysize)) image.paste(part1, (xsize-delta, 0, xsize, ysize)) return image
分离和合并通道
r, g, b = im.split()im = Image.merge("RGB", (b, g, r))
对于单通道图片,split()返回图像本身。为了处理单通道图片,必须先将图片转成RGB。
几何变换
Image类有resize()、rotate()和transpose()、transform()方法进行几何变换。
简单几何变换
out = im.resize((128, 128))out = im.rotate(45) # 顺时针角度表示
置换图像
out = im.transpose(Image.FLIP_LEFT_RIGHT)out = im.transpose(Image.FLIP_TOP_BOTTOM)out = im.transpose(Image.ROTATE_90)out = im.transpose(Image.ROTATE_180)out = im.transpose(Image.ROTATE_270)
transpose()和象的rotate()没有性能差别。
更通用的图像变换方法可以使用transform()
模式转换
convert()方法
模式转换
im = Image.open('lena.ppm').convert('L')
图像增强
Filter ImageFilter模块包含很多预定义的增强filters,通过filter()方法使用
应用filters
from PIL import ImageFilterout = im.filter(ImageFilter.DETAIL)
像素点处理
point()方法通过一个函数或者查询表对图像中的像素点进行处理(例如对比度操作)。
像素点变换
# multiply each pixel by 1.2out = im.point(lambda i: i * 1.2)
上述方法可以利用简单的表达式进行图像处理,通过组合point()和paste()还能选择性地处理图片的某一区域。
处理单独通道
# split the image into indivial bandssource = im.split()R, G, B = 0, 1, 2# select regions where red is less than 100mask = source[R].point(lambda i: i < 100 and 255)# process the green bandout = source[G].point(lambda i: i * 0.7)# paste the processed band back, but only where red was < 100source[G].paste(out, None, mask)# build a new multiband imageim = Image.merge(im.mode, source)
注意到创建mask的语句:
mask = source[R].point(lambda i: i < 100 and 255)
该句可以用下句表示
imout = im.point(lambda i: expression and 255)
如果expression为假则返回expression的值为0(因为and语句已经可以得出结果了),否则返回255。(mask参数用法:当为0时,保留当前值,255为使用paste进来的值,中间则用于transparency效果)
高级图片增强
对其他高级图片增强,应该使用ImageEnhance模块 。一旦有一个Image对象,应用ImageEnhance对象就能快速地进行设置。 可以使用以下方法调整对比度、亮度、色平衡和锐利度。
图像增强
from PIL import ImageEnhanceenh = ImageEnhance.Contrast(im)enh.enhance(1.3).show("30% more contrast")
动态图
Pillow支持一些动态图片的格式如FLI/FLC,GIF和其他一些处于实验阶段的格式。TIFF文件同样可以包含数帧图像。
当读取动态图时,PIL自动读取动态图的第一帧,可以使用seek和tell方法读取不同郑
from PIL import Imageim = Image.open("animation.gif")im.seek(1) # skip to the second frametry: while 1: im.seek(im.tell()+1) # do something to imexcept EOFError: pass # end of sequence
当读取到最后一帧时,Pillow抛出EOFError异常。
当前版本只允许seek到下一郑为了倒回之前,必须重新打开文件。
或者可以使用下述迭代器类
动态图迭代器类
class ImageSequence: def __init__(self, im): self.im = im def __getitem__(self, ix): try: if ix: self.im.seek(ix) return self.im except EOFError: raise IndexError # end of sequencefor frame in ImageSequence(im): # ...do something to frame...Postscript Printing
Pillow允许通过Postscript Printer在图片上添加images、text、graphics。
Drawing Postscriptfrom PIL import Imagefrom PIL import PSDrawim = Image.open("lena.ppm")title = "lena"box = (1*72, 2*72, 7*72, 10*72) # in pointsps = PSDraw.PSDraw() # default is sys.stdoutps.begin_document(title)# draw the image (75 dpi)ps.image(box, im, 75)ps.rectangle(box)# draw centered titleps.setfont("HelveticaNarrow-Bold", 36)w, h, b = ps.textsize(title)ps.text((4*72-w/2, 1*72-h), title)ps.end_document()
更多读取图片方法
之前说到Image模块的open()函数已经足够日常使用。该函数的参数也可以是一个文件对象。
从string中读取
import StringIOim = Image.open(StringIO.StringIO(buffer))
从tar文件中读取
from PIL import TarIOfp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm")im = Image.open(fp)
草稿模式
draft()方法允许在不读取文件内容的情况下尽可能(可能不会完全等于给定的参数)地将图片转成给定模式和大小,这在生成缩略图的时候非常有效(速度要求比质量高的场合)。
draft模式
from __future__ import print_functionim = Image.open(file)print("original =", im.mode, im.size)im.draft("L", (100, 100))print("draft =", im.mode, im.size)
6. python+opencv2怎么将图像像素值转换为float64用于后续计算
我没用过Python的Opencv的库,只是用过Python的Image的库;Image库已经可以结果这个问题了我试着做一下:你先得安装PIL库得到rgb三个通道,然后转到HSV通道,其中H表示0-255的颜色,V表示强度,你大概先知道紫色的范围是多少from PIL import Imageimport colorsysdef CalculateH(img): if len(img.getbands()) == 4: ir,ig,ib,ia = img.split() else: ir, ig, ib = img.split() Hdat = [] Sdat = [] Vdat = [] for rd,gn,bl in zip(ir.getdata(),ig.getdata(),ib.getdata()): h,l,s = colorsys.rgb_to_hsv(rd/255.,gn/255.,bl/255.) Hdat.append(h) Sdat.append(l) Vdat.append(s) meanV = mean(Vdat) return Hdat, meanV def myreadim(filename): im = Image.open(filename) H,V = CalculateH(im)后面我就懒得写了,应该思路都清楚了吧,要转到其他的颜色通道上,不要在rgb通道上
7. 使用python PIL处理图片。怎么获取图片的像素数据
importimage
importsys
img=image.open("图片位置")
width=img.size[0]
height=img.size[1]
forwinrange(width):
forhinrange(height):
pixel=img.getpixel(w,h)
printpixel
#width,height是图片的宽度与长度
#pixel是像素值
8. python图像处理初学者求助
Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
1)使用 Image 类
PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,可以使用open( )函数,在Image模块中:
1
2
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:
1
2
3
>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>
format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
1
im.show()
2)读写图像
PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
加载文件,并转化为png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二个参数可以指定文件格式。
3)创建缩略图
缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。
注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。
4)图像的剪切、粘贴与合并操作
Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:
1
2
3
4
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200×200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。
5)分离和合并颜色通道
对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:
1
2
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:
1
2
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)图像滤波