导航:首页 > 编程语言 > 时间模糊匹配python

时间模糊匹配python

发布时间:2023-07-19 14:44:04

python中正则表达式的匹配规则总结

其他关于Python的总结文章请访问: https://www.jianshu.com/nb/47435944

正则表达式用来匹配字符串,在python中可以使用 re 模块来完成,本篇做一个对正则表达式的匹配规则的总结

在上述的精确匹配后可以跟上一些符号来进行模糊的匹配:

可以使用中括号的形式进行范围匹配,中括号表达式后边可以跟上上述模糊匹配的符号来表示数量

多个条件可以 紧跟着写在同一个中括号中 ,比如:
[a-zA-Z] :匹配一个大、小写字母

② python 简单模糊匹配

根据报错的信息find这个变量是float类型而不是str类型的,str才有startsWith这个方法,你想找的实际上是excel表格中的值,我觉得你需要先把find这个变量在后台打印出来,如以下代码

forfindinxx:
print"@54",find
iffind.startswith('A1'):
....
...

③ python判断给定的字符串是否是有效日期的方法

不太清楚你说的有效日期具体指什么,如果是普通的标准时间格式的话,python有一个模块有日期格式相关的解析

使用的模块:

fromdateutilimportparser

相关关键解析语句:

str(parser.parse(value))

解析效果:

  1. 解析前:

    1995 03 21 12 12 12
    1995-03-21 12:12:12
    1995:03:21 12:12:12
    1995/03/21 12:12:12
    19950321121212

  2. 解析后:

    统一变为标准时间格式:1995-03-21 12:12:12


因此利用这个模块可以匹配到有效日期

希望我的回答可以帮到你:-)

④ 怎么使用Python中Pandas库Resample,实现重采样,完成线性插值

#python中的pandas库主要有DataFrame和Series类(面向对象的的语言更愿意叫类) DataFrame也就是
#数据框(主要是借鉴R里面的data.frame),Series也就是序列 ,pandas底层是c写的 性能很棒,有大神
#做过测试 处理亿级别的数据没问题,起性能可以跟同等配置的sas媲美
#DataFrame索引 df.loc是标签选取操作,df.iloc是位置切片操作
print(df[['row_names','Rape']])
df['行标签']
df.loc[行标签,列标签]
print(df.loc[0:2,['Rape','Murder']])
df.iloc[行位置,列位置]
df.iloc[1,1]#选取第二行,第二列的值,返回的为单个值
df.iloc[0,2],:]#选取第一行及第三行的数据
df.iloc[0:2,:]#选取第一行到第三行(不包含)的数据
df.iloc[:,1]#选取所有记录的第一列的值,返回的为一个Series
df.iloc[1,:]#选取第一行数据,返回的为一个Series
print(df.ix[1,1]) # 更广义的切片方式是使用.ix,它自动根据你给到的索引类型判断是使用位置还是标签进行切片
print(df.ix[0:2])
#DataFrame根据条件选取子集 类似于sas里面if、where ,R里面的subset之类的函数
df[df.Murder>13]
df[(df.Murder>10)&(df.Rape>30)]
df[df.sex==u'男']
#重命名 相当于sas里面的rename R软件中reshape包的中的rename
df.rename(columns={'A':'A_rename'})
df.rename(index={1:'other'})
#删除列 相当于sas中的drop R软件中的test['col']<-null
df.drop(['a','b'],axis=1) or del df[['a','b']]
#排序 相当于sas里面的sort R软件里面的df[order(x),]
df.sort(columns='C') #行排序 y轴上
df.sort(axis=1) #各个列之间位置排序 x轴上
#数据描述 相当于sas中proc menas R软件里面的summary
df.describe()
#生成新的一列 跟R里面有点类似
df['new_columns']=df['columns']
df.insert(1,'new_columns',df['B']) #效率最高
df.join(Series(df['columns'],name='new_columns'))
#列上面的追加 相当于sas中的append R里面cbind()
df.append(df1,ignore_index=True)
pd.concat([df,df1],ignore_index=True)
#最经典的join 跟sas和R里面的merge类似 跟sql里面的各种join对照
merge()
#删除重行 跟sas里面nokey R里面的which(!plicated(df[])类似
df.drop_plicated()
#获取最大值 最小值的位置 有点类似矩阵里面的方法
df.idxmin(axis=0 ) df.idxmax(axis=1) 0和1有什么不同 自己摸索去
#读取外部数据跟sas的proc import R里面的read.csv等类似
read_excel() read_csv() read_hdf5() 等
与之相反的是df.to_excel() df.to_ecv()
#缺失值处理 个人觉得pandas中缺失值处理比sas和R方便多了
df.fillna(9999) #用9999填充
#链接数据库 不多说 pandas里面主要用 MySQLdb
import MySQLdb
conn=MySQLdb.connect(host="localhost",user="root",passwd="",db="mysql",use_unicode=True,charset="utf8")
read_sql() #很经典
#写数据进数据库
df.to_sql('hbase_visit',con, flavor="mysql", if_exists='replace', index=False)
#groupby 跟sas里面的中的by R软件中dplyr包中的group_by sql里面的group by功能是一样的 这里不多说
#求哑变量
miper=pd.get_mmies(df['key'])
df['key'].join(mpier)
#透视表 和交叉表 跟sas里面的proc freq步类似 R里面的aggrate和cast函数类似
pd.pivot_table()
pd.crosstab()
#聚合函数经常跟group by一起组合用
df.groupby('sex').agg({'height':['mean','sum'],'weight':['count','min']})

#数据查询过滤

test.query("0.2
将STK_ID中的值过滤出来
stk_list = ['600809','600141','600329']中的全部记录过滤出来,命令是:rpt[rpt['STK_ID'].isin(stk_list)].
将dataframe中,某列进行清洗的命令
删除换行符:misc['proct_desc'] = misc['proct_desc'].str.replace('\n', '')
删除字符串前后空格:df["Make"] = df["Make"].map(str.strip)
如果用模糊匹配的话,命令是:
rpt[rpt['STK_ID'].str.contains(r'^600[0-9]{3}$')]

对dataframe中元素,进行类型转换

df['2nd'] = df['2nd'].str.replace(',','').astype(int) df['CTR'] = df['CTR'].str.replace('%','').astype(np.float64)

#时间变换 主要依赖于datemie 和time两个包
http://www.2cto.com/kf/201401/276088.html
#其他的一些技巧
df2[df2['A'].map(lambda x:x.startswith('61'))] #筛选出以61开头的数据
df2["Author"].str.replace("<.+>", "").head() #replace("<.+>", "")表示将字符串中以”<”开头;以”>”结束的任意子串替换为空字符串
commits = df2["Name"].head(15)
print commits.unique(), len(commits.unique()) #获的NAME的不同个数,类似于sql里面count(distinct name)
#pandas中最核心 最经典的函数apply map applymap

阅读全文

与时间模糊匹配python相关的资料

热点内容
命令来自剃头的用英语怎么说 浏览:763
什么app不花一分钱买东西 浏览:373
布林四线指标源码 浏览:968
单片机的控制板 浏览:218
襄阳软件编程 浏览:841
sshpass命令 浏览:106
logo服务器怎么下载 浏览:508
如何ftp连接服务器 浏览:674
creo自动编程 浏览:161
云服务器在电脑怎么开 浏览:432
ipad相册如何在文件夹中建文件夹 浏览:621
和家亲这个app有什么用 浏览:575
什么app里面有种树打折 浏览:374
编程外挂入门教学 浏览:974
pdf黑白转彩色 浏览:725
英国投资加密货币吗 浏览:887
看完程序员那么可爱后的感受 浏览:131
广播在什么APP能听 浏览:678
阿克曼小车连接什么app 浏览:773
all100编程器 浏览:182